python类Convolution2D()的实例源码

ssd_vgg16.py 文件源码 项目:chainercv 作者: chainer 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self):
        init = {
            'initialW': initializers.LeCunUniform(),
            'initial_bias': initializers.Zero(),
        }
        super(VGG16Extractor300, self).__init__()
        with self.init_scope():
            self.conv8_1 = L.Convolution2D(256, 1, **init)
            self.conv8_2 = L.Convolution2D(512, 3, stride=2, pad=1, **init)

            self.conv9_1 = L.Convolution2D(128, 1, **init)
            self.conv9_2 = L.Convolution2D(256, 3, stride=2, pad=1, **init)

            self.conv10_1 = L.Convolution2D(128, 1, **init)
            self.conv10_2 = L.Convolution2D(256, 3, **init)

            self.conv11_1 = L.Convolution2D(128, 1, **init)
            self.conv11_2 = L.Convolution2D(256, 3, **init)
ssd_vgg16.py 文件源码 项目:chainercv 作者: chainer 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self):
        init = {
            'initialW': initializers.LeCunUniform(),
            'initial_bias': initializers.Zero(),
        }
        super(VGG16Extractor512, self).__init__()
        with self.init_scope():
            self.conv8_1 = L.Convolution2D(256, 1, **init)
            self.conv8_2 = L.Convolution2D(512, 3, stride=2, pad=1, **init)

            self.conv9_1 = L.Convolution2D(128, 1, **init)
            self.conv9_2 = L.Convolution2D(256, 3, stride=2, pad=1, **init)

            self.conv10_1 = L.Convolution2D(128, 1, **init)
            self.conv10_2 = L.Convolution2D(256, 3, stride=2, pad=1, **init)

            self.conv11_1 = L.Convolution2D(128, 1, **init)
            self.conv11_2 = L.Convolution2D(256, 3, stride=2, pad=1, **init)

            self.conv12_1 = L.Convolution2D(128, 1, **init)
            self.conv12_2 = L.Convolution2D(256, 4, pad=1, **init)
multibox.py 文件源码 项目:chainercv 作者: chainer 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(
            self, n_class, aspect_ratios,
            initialW=None, initial_bias=None):
        self.n_class = n_class
        self.aspect_ratios = aspect_ratios

        super(Multibox, self).__init__()
        with self.init_scope():
            self.loc = chainer.ChainList()
            self.conf = chainer.ChainList()

        if initialW is None:
            initialW = initializers.LeCunUniform()
        if initial_bias is None:
            initial_bias = initializers.Zero()
        init = {'initialW': initialW, 'initial_bias': initial_bias}

        for ar in aspect_ratios:
            n = (len(ar) + 1) * 2
            self.loc.add_link(L.Convolution2D(n * 4, 3, pad=1, **init))
            self.conf.add_link(L.Convolution2D(
                n * self.n_class, 3, pad=1, **init))
googlenet.py 文件源码 项目:deel 作者: uei 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self):
        super(GoogLeNet, self).__init__(
            conv1=L.Convolution2D(3,  64, 7, stride=2, pad=3),
            conv2_reduce=L.Convolution2D(64,  64, 1),
            conv2=L.Convolution2D(64, 192, 3, stride=1, pad=1),
            inc3a=L.Inception(192,  64,  96, 128, 16,  32,  32),
            inc3b=L.Inception(256, 128, 128, 192, 32,  96,  64),
            inc4a=L.Inception(480, 192,  96, 208, 16,  48,  64),
            inc4b=L.Inception(512, 160, 112, 224, 24,  64,  64),
            inc4c=L.Inception(512, 128, 128, 256, 24,  64,  64),
            inc4d=L.Inception(512, 112, 144, 288, 32,  64,  64),
            inc4e=L.Inception(528, 256, 160, 320, 32, 128, 128),
            inc5a=L.Inception(832, 256, 160, 320, 32, 128, 128),
            inc5b=L.Inception(832, 384, 192, 384, 48, 128, 128),
            loss3_fc=L.Linear(1024, 1000),

            loss1_conv=L.Convolution2D(512, 128, 1),
            loss1_fc1=L.Linear(4 * 4 * 128, 1024),
            loss1_fc2=L.Linear(1024, 1000),

            loss2_conv=L.Convolution2D(528, 128, 1),
            loss2_fc1=L.Linear(4 * 4 * 128, 1024),
            loss2_fc2=L.Linear(1024, 1000)
        )
        self.train = True
resnet50.py 文件源码 项目:chainermn 作者: chainer 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, in_size, ch, out_size, stride=2):
        super(BottleNeckA, self).__init__()
        initialW = initializers.HeNormal()

        with self.init_scope():
            self.conv1 = L.Convolution2D(
                in_size, ch, 1, stride, 0, initialW=initialW, nobias=True)
            self.bn1 = L.BatchNormalization(ch)
            self.conv2 = L.Convolution2D(
                ch, ch, 3, 1, 1, initialW=initialW, nobias=True)
            self.bn2 = L.BatchNormalization(ch)
            self.conv3 = L.Convolution2D(
                ch, out_size, 1, 1, 0, initialW=initialW, nobias=True)
            self.bn3 = L.BatchNormalization(out_size)

            self.conv4 = L.Convolution2D(
                in_size, out_size, 1, stride, 0,
                initialW=initialW, nobias=True)
            self.bn4 = L.BatchNormalization(out_size)
googlenet.py 文件源码 项目:chainermn 作者: chainer 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self):
        super(GoogLeNet, self).__init__()
        with self.init_scope():
            self.conv1 = L.Convolution2D(None, 64, 7, stride=2, pad=3)
            self.conv2_reduce = L.Convolution2D(None, 64, 1)
            self.conv2 = L.Convolution2D(None, 192, 3, stride=1, pad=1)
            self.inc3a = L.Inception(None, 64, 96, 128, 16, 32, 32)
            self.inc3b = L.Inception(None, 128, 128, 192, 32, 96, 64)
            self.inc4a = L.Inception(None, 192, 96, 208, 16, 48, 64)
            self.inc4b = L.Inception(None, 160, 112, 224, 24, 64, 64)
            self.inc4c = L.Inception(None, 128, 128, 256, 24, 64, 64)
            self.inc4d = L.Inception(None, 112, 144, 288, 32, 64, 64)
            self.inc4e = L.Inception(None, 256, 160, 320, 32, 128, 128)
            self.inc5a = L.Inception(None, 256, 160, 320, 32, 128, 128)
            self.inc5b = L.Inception(None, 384, 192, 384, 48, 128, 128)
            self.loss3_fc = L.Linear(None, 1000)

            self.loss1_conv = L.Convolution2D(None, 128, 1)
            self.loss1_fc1 = L.Linear(None, 1024)
            self.loss1_fc2 = L.Linear(None, 1000)

            self.loss2_conv = L.Convolution2D(None, 128, 1)
            self.loss2_fc1 = L.Linear(None, 1024)
            self.loss2_fc2 = L.Linear(None, 1000)
googlenet.py 文件源码 项目:chainermn 作者: chainer 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self):
        super(GoogLeNet, self).__init__(
            conv1=L.Convolution2D(None,  64, 7, stride=2, pad=3),
            conv2_reduce=L.Convolution2D(None,  64, 1),
            conv2=L.Convolution2D(None, 192, 3, stride=1, pad=1),
            inc3a=L.Inception(None,  64,  96, 128, 16,  32,  32),
            inc3b=L.Inception(None, 128, 128, 192, 32,  96,  64),
            inc4a=L.Inception(None, 192,  96, 208, 16,  48,  64),
            inc4b=L.Inception(None, 160, 112, 224, 24,  64,  64),
            inc4c=L.Inception(None, 128, 128, 256, 24,  64,  64),
            inc4d=L.Inception(None, 112, 144, 288, 32,  64,  64),
            inc4e=L.Inception(None, 256, 160, 320, 32, 128, 128),
            inc5a=L.Inception(None, 256, 160, 320, 32, 128, 128),
            inc5b=L.Inception(None, 384, 192, 384, 48, 128, 128),
            loss3_fc=L.Linear(None, 1000),

            loss1_conv=L.Convolution2D(None, 128, 1),
            loss1_fc1=L.Linear(None, 1024),
            loss1_fc2=L.Linear(None, 1000),

            loss2_conv=L.Convolution2D(None, 128, 1),
            loss2_fc1=L.Linear(None, 1024),
            loss2_fc2=L.Linear(None, 1000)
        )
        self.train = True
alex.py 文件源码 项目:chainermn 作者: chainer 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self):
        self.dtype = np.float16
        W = initializers.HeNormal(1 / np.sqrt(2), self.dtype)
        bias = initializers.Zero(self.dtype)
        chainer.Chain.__init__(
            self,
            conv1=L.Convolution2D(None, 96, 11,
                                  stride=4, initialW=W, bias=bias),
            conv2=L.Convolution2D(None, 256, 5, pad=2, initialW=W, bias=bias),
            conv3=L.Convolution2D(None, 384, 3, pad=1, initialW=W, bias=bias),
            conv4=L.Convolution2D(None, 384, 3, pad=1, initialW=W, bias=bias),
            conv5=L.Convolution2D(None, 256, 3, pad=1, initialW=W, bias=bias),
            fc6=L.Linear(None, 4096, initialW=W, bias=bias),
            fc7=L.Linear(None, 4096, initialW=W, bias=bias),
            fc8=L.Linear(None, 1000, initialW=W, bias=bias),
        )
        self.train = True
net.py 文件源码 项目:chainermn 作者: chainer 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, bottom_width=4, ch=512, wscale=0.02):
        w = chainer.initializers.Normal(wscale)
        super(Discriminator, self).__init__()
        with self.init_scope():
            self.c0_0 = L.Convolution2D(3, ch // 8, 3, 1, 1, initialW=w)
            self.c0_1 = L.Convolution2D(ch // 8, ch // 4, 4, 2, 1, initialW=w)
            self.c1_0 = L.Convolution2D(ch // 4, ch // 4, 3, 1, 1, initialW=w)
            self.c1_1 = L.Convolution2D(ch // 4, ch // 2, 4, 2, 1, initialW=w)
            self.c2_0 = L.Convolution2D(ch // 2, ch // 2, 3, 1, 1, initialW=w)
            self.c2_1 = L.Convolution2D(ch // 2, ch // 1, 4, 2, 1, initialW=w)
            self.c3_0 = L.Convolution2D(ch // 1, ch // 1, 3, 1, 1, initialW=w)
            self.l4 = L.Linear(bottom_width * bottom_width * ch, 1, initialW=w)
            self.bn0_1 = L.BatchNormalization(ch // 4, use_gamma=False)
            self.bn1_0 = L.BatchNormalization(ch // 4, use_gamma=False)
            self.bn1_1 = L.BatchNormalization(ch // 2, use_gamma=False)
            self.bn2_0 = L.BatchNormalization(ch // 2, use_gamma=False)
            self.bn2_1 = L.BatchNormalization(ch // 1, use_gamma=False)
            self.bn3_0 = L.BatchNormalization(ch // 1, use_gamma=False)
densenet.py 文件源码 项目:chainer-examples 作者: nocotan 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __init__(self, n_class, in_ch, n_layer=12, growth_rate=12,
                 dropout_ratio=0.2, block=3):
        in_chs = [in_ch + n_layer * growth_rate * i
                  for i in moves.range(block + 1)]
        super(DenseBlock, self).__init__()
        self.add_link(
            'conv1', L.Convolution2D(3, in_ch, 3, 1, 1, wscale=np.sqrt(2))
        )
        for i in moves.range(block):
            self.add_link('dense%d' % (i+2),
                          DenseBlock(in_chs[i], growth_rate, n_layer))
            if not i == block - 1:
                self.add_link('trans%d' % (i+2), Transition(in_chs[i+1]))

        self.add_link(
            'bn%d' % (block+1), L.BatchNormalization(in_chs[block])
        )
        self.add_link('fc%d' % (block+2), L.Linear(in_chs[block], n_class))
        self.train = True
        self.dropout_ratio = dropout_ratio
        self.block = block
resnet101.py 文件源码 项目:chainer-examples 作者: nocotan 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, in_size, ch, out_size, stride=2):
        super(BottleNeckA, self).__init__()
        w = initializers.HeNormal()

        with self.init_scope():
            self.conv1 = L.Convolution2D(in_size, ch, 1, stride, 0,
                                         initialW=w, nobias=True)
            self.conv2 = L.Convolution2D(ch, ch, 3, 1, 1,
                                         initialW=w, nobias=True)
            self.conv3 = L.Convolution2D(ch, out_size, 1, 1, 0,
                                         initialW=w, nobias=True)
            self.conv4 = L.Convolution2D(in_size, out_size, 1, stride, 0,
                                         initialW=w, nobias=True)
            self.bn1 = L.BatchNormalization(ch)
            self.bn2 = L.BatchNormalization(ch)
            self.bn3 = L.BatchNormalization(out_size)
            self.bn4 = L.BatchNormalization(out_size)
resnet50.py 文件源码 项目:chainer-examples 作者: nocotan 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, in_size, ch, out_size, stride=2):
        super(BottleNeckA, self).__init__()
        w = initializers.HeNormal()

        with self.init_scope():
            self.conv1 = L.Convolution2D(in_size, ch, 1, stride, 0,
                                         initialW=w, nobias=True)
            self.conv2 = L.Convolution2D(ch, ch, 3, 1, 1,
                                         initialW=w, nobias=True)
            self.conv3 = L.Convolution2D(ch, out_size, 1, 1, 0,
                                         initialW=w, nobias=True)
            self.conv4 = L.Convolution2D(in_size, out_size, 1, stride, 0,
                                         initialW=2, nobias=True)
            self.bn1 = L.BatchNormalization(ch)
            self.bn2 = L.BatchNormalization(ch)
            self.bn3 = L.BatchNormalization(out_size)
            self.bn4 = L.BatchNormalization(out_size)
resnet152.py 文件源码 项目:chainer-examples 作者: nocotan 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, in_size, ch, out_size, stride=2):
        super(BottleNeckA, self).__init__()
        w = initializers.HeNormal()

        with self.init_scope():
            self.conv1 = L.Convolution2D(in_size, ch, 1, stride, 0,
                                         initialW=w, nobias=True)
            self.conv2 = L.Convolution2D(ch, ch, 3, 1, 1,
                                         initialW=w, nobias=True)
            self.conv3 = L.Convolution2D(ch, out_size, 1, 1, 0,
                                         initialW=w, nobias=True)
            self.conv4 = L.Convolution2D(in_size, out_size, 1, stride, 0,
                                         initialW=w, nobias=True)
            self.bn1 = L.BatchNormalization(ch)
            self.bn2 = L.BatchNormalization(ch)
            self.bn3 = L.BatchNormalization(out_size)
            self.bn4 = L.BatchNormalization(out_size)
vgg16net.py 文件源码 项目:chainer-examples 作者: nocotan 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, num_class, train=True):
        super(VGG16Net, self).__init__()
        with self.init_scope():
            self.conv1=L.Convolution2D(None, 64, 3, stride=1, pad=1)
            self.conv2=L.Convolution2D(None, 64, 3, stride=1, pad=1)

            self.conv3=L.Convolution2D(None, 128, 3, stride=1, pad=1)
            self.conv4=L.Convolution2D(None, 128, 3, stride=1, pad=1)

            self.conv5=L.Convolution2D(None, 256, 3, stride=1, pad=1)
            self.conv6=L.Convolution2D(None, 256, 3, stride=1, pad=1)
            self.conv7=L.Convolution2D(None, 256, 3, stride=1, pad=1)

            self.conv8=L.Convolution2D(None, 512, 3, stride=1, pad=1)
            self.conv9=L.Convolution2D(None, 512, 3, stride=1, pad=1)
            self.conv10=L.Convolution2D(None, 512, 3, stride=1, pad=1)

            self.conv11=L.Convolution2D(None, 512, 3, stride=1, pad=1)
            self.conv12=L.Convolution2D(None, 512, 3, stride=1, pad=1)
            self.conv13=L.Convolution2D(None, 512, 3, stride=1, pad=1)

            self.fc14=L.Linear(None, 4096)
            self.fc15=L.Linear(None, 4096)
            self.fc16=L.Linear(None, num_class)
net.py 文件源码 项目:chainer-examples 作者: nocotan 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, bottom_width=4, ch=512, wscale=0.02):
        w = chainer.initializers.Normal(wscale)
        super(Discriminator, self).__init__()
        with self.init_scope():
            self.c0_0 = L.Convolution2D(3, ch//8, 3, 1, 1, initialW=w)
            self.c0_1 = L.Convolution2D(ch//8, ch//4, 4, 2, 1, initialW=w)
            self.c1_0 = L.Convolution2D(ch//4, ch//4, 3, 1, 1, initialW=w)
            self.c1_1 = L.Convolution2D(ch//4, ch//2, 4, 2, 1, initialW=w)
            self.c2_0 = L.Convolution2D(ch//2, ch//2, 3, 1, 1, initialW=w)
            self.c2_1 = L.Convolution2D(ch//2, ch//1, 4, 2, 1, initialW=w)
            self.c3_0 = L.Convolution2D(ch//1, ch//1, 3, 1, 1, initialW=w)
            self.l4 = L.Linear(bottom_width*bottom_width*ch, 1, initialW=w)
            self.bn0_1 = L.BatchNormalization(ch // 4, use_gamma=False)
            self.bn1_0 = L.BatchNormalization(ch // 4, use_gamma=False)
            self.bn1_1 = L.BatchNormalization(ch // 2, use_gamma=False)
            self.bn2_0 = L.BatchNormalization(ch // 2, use_gamma=False)
            self.bn2_1 = L.BatchNormalization(ch // 1, use_gamma=False)
            self.bn3_0 = L.BatchNormalization(ch // 1, use_gamma=False)
wgan.py 文件源码 项目:chainer-image-generation 作者: fukuta0614 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def __init__(self, size=64, ch=512, wscale=0.005, use_gamma=True):
        assert (size % 16 == 0)
        initial_size = size // 16
        w = chainer.initializers.Normal(wscale)
        super(Discriminator, self).__init__(
            c0_0=L.Convolution2D(3, ch // 8, 3, 1, 1, initialW=w),
            c0_1=L.Convolution2D(ch // 8, ch // 4, 4, 2, 1, initialW=w),
            c1_1=L.Convolution2D(ch // 4, ch // 2, 4, 2, 1, initialW=w),
            c2_1=L.Convolution2D(ch // 2, ch // 1, 4, 2, 1, initialW=w),
            c3_0=L.Convolution2D(ch // 1, ch // 1, 4, 2, 1, initialW=w),
            l4=L.Linear(initial_size * initial_size * ch, 1, initialW=w),
            bn0_1=L.BatchNormalization(ch // 4, use_gamma=use_gamma),
            bn1_1=L.BatchNormalization(ch // 2, use_gamma=use_gamma),
            bn2_1=L.BatchNormalization(ch // 1, use_gamma=use_gamma),
            bn3_0=L.BatchNormalization(ch // 1, use_gamma=use_gamma),
        )
wgan.py 文件源码 项目:chainer-image-generation 作者: fukuta0614 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def __init__(self, size=64, ch=512, wscale=0.005):
        assert (size % 16 == 0)
        initial_size = size // 16
        w = chainer.initializers.Normal(wscale)
        super(Discriminator2, self).__init__(
            c0_0=L.Convolution2D(3, ch // 8, 3, 1, 1, initialW=w),
            c0_1=L.Convolution2D(ch // 8, ch // 4, 4, 2, 1, initialW=w),
            c1_1=L.Convolution2D(ch // 4, ch // 2, 4, 2, 1, initialW=w),
            c2_1=L.Convolution2D(ch // 2, ch // 1, 4, 2, 1, initialW=w),
            c3_0=L.Convolution2D(ch // 1, ch // 1, 4, 2, 1, initialW=w),
            l4=L.Linear(initial_size * initial_size * ch, 1, initialW=w),
            bn0_1=L.BatchNormalization(ch // 4, use_gamma=False),
            bn1_1=L.BatchNormalization(ch // 2, use_gamma=False),
            bn2_1=L.BatchNormalization(ch // 1, use_gamma=False),
            bn3_0=L.BatchNormalization(ch // 1, use_gamma=False),
        )
wgan.py 文件源码 项目:chainer-image-generation 作者: fukuta0614 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __init__(self, bottom_width=8, ch=512, wscale=0.005):
        w = chainer.initializers.Normal(wscale)
        super(DiscriminatorPFN, self).__init__(
            c0_0=L.Convolution2D(3, ch // 8, 3, 1, 1, initialW=w),
            c0_1=L.Convolution2D(ch // 8, ch // 4, 4, 2, 1, initialW=w),
            c1_0=L.Convolution2D(ch // 4, ch // 4, 3, 1, 1, initialW=w),
            c1_1=L.Convolution2D(ch // 4, ch // 2, 4, 2, 1, initialW=w),
            c2_0=L.Convolution2D(ch // 2, ch // 2, 3, 1, 1, initialW=w),
            c2_1=L.Convolution2D(ch // 2, ch // 1, 4, 2, 1, initialW=w),
            c3_0=L.Convolution2D(ch // 1, ch // 1, 3, 1, 1, initialW=w),
            l4=L.Linear(bottom_width * bottom_width * ch, 1, initialW=w),
            bn0_1=L.BatchNormalization(ch // 4, use_gamma=False),
            bn1_0=L.BatchNormalization(ch // 4, use_gamma=False),
            bn1_1=L.BatchNormalization(ch // 2, use_gamma=False),
            bn2_0=L.BatchNormalization(ch // 2, use_gamma=False),
            bn2_1=L.BatchNormalization(ch // 1, use_gamma=False),
            bn3_0=L.BatchNormalization(ch // 1, use_gamma=False),
        )
iwgan.py 文件源码 项目:chainer-image-generation 作者: fukuta0614 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, size=64, ch=512, wscale=0.005):
        assert (size % 8 == 0)
        initial_size = size // 8

        w = chainer.initializers.Normal(wscale)
        super(Discriminator, self).__init__(
            c0_0=L.Convolution2D(3, ch // 8, 3, 1, 1, initialW=w),
            c0_1=L.Convolution2D(ch // 8, ch // 4, 4, 2, 1, initialW=w),
            c1_0=L.Convolution2D(ch // 4, ch // 4, 3, 1, 1, initialW=w),
            c1_1=L.Convolution2D(ch // 4, ch // 2, 4, 2, 1, initialW=w),
            c2_0=L.Convolution2D(ch // 2, ch // 2, 3, 1, 1, initialW=w),
            c2_1=L.Convolution2D(ch // 2, ch // 1, 4, 2, 1, initialW=w),
            c3_0=L.Convolution2D(ch // 1, ch // 1, 3, 1, 1, initialW=w),
            l4=L.Linear(initial_size * initial_size * ch, 1, initialW=w),
        )

    # noinspection PyCallingNonCallable,PyUnresolvedReferences
vaegan.py 文件源码 项目:chainer-image-generation 作者: fukuta0614 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def __init__(self, density=1, size=64, latent_size=128, channel=3):
        assert (size % 16 == 0)
        initial_size = size / 16
        super(Encoder, self).__init__(
            enc1=L.Convolution2D(channel, 64 * density, 4, stride=2, pad=1,
                                 wscale=0.02 * math.sqrt(4 * 4 * channel * density)),
            norm1=L.BatchNormalization(64 * density),
            enc2=L.Convolution2D(64 * density, 128 * density, 4, stride=2, pad=1,
                                 wscale=0.02 * math.sqrt(4 * 4 * 64 * density)),
            norm2=L.BatchNormalization(128 * density),
            enc3=L.Convolution2D(128 * density, 128 * density, 4, stride=2, pad=1,
                                 wscale=0.02 * math.sqrt(4 * 4 * 128 * density)),
            norm3=L.BatchNormalization(128 * density),
            enc4=L.Convolution2D(128 * density, 256 * density, 4, stride=2, pad=1,
                                 wscale=0.02 * math.sqrt(4 * 4 * 128 * density)),
            norm4=L.BatchNormalization(256 * density),
            mean=L.Linear(initial_size * initial_size * 256 * density, latent_size,
                          wscale=0.02 * math.sqrt(initial_size * initial_size * 256 * density)),
            ln_var=L.Linear(initial_size * initial_size * 256 * density, latent_size,
                            wscale=0.02 * math.sqrt(initial_size * initial_size * 256 * density)),
        )


问题


面经


文章

微信
公众号

扫码关注公众号