python类broadcast_to()的实例源码

model.py 文件源码 项目:chainer_nmt 作者: odashi 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def _context(self, p, fb_mat, fbe_mat):
    batch_size, source_length, _ = fb_mat.data.shape
    # {pe,e}_mat: shape = [batch * srclen, atten]
    pe_mat = F.reshape(
        F.broadcast_to(
            F.expand_dims(self.p_e(p), 1),
            [batch_size, source_length, self.atten_size]),
        [batch_size * source_length, self.atten_size])
    e_mat = F.tanh(fbe_mat + pe_mat)
    # a_mat: shape = [batch, srclen]
    a_mat = F.softmax(F.reshape(self.e_a(e_mat), [batch_size, source_length]))
    # q: shape = [batch, 2 * hidden]
    q = F.reshape(
        F.batch_matmul(a_mat, fb_mat, transa=True),
        [batch_size, 2 * self.hidden_size])

    return q
net.py 文件源码 项目:convolutional_seq2seq 作者: soskek 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def attend(self, query, key, value, mask, minfs=None):
        """
        Input shapes:
            q=(b, units, dec_l), k=(b, units, enc_l),
            v=(b, units, dec_l, enc_l), m=(b, dec_l, enc_l)
        """

        # Calculate Attention Scores with Mask for Zero-padded Areas
        pre_a = F.batch_matmul(query, key, transa=True)  # (b, dec_l, enc_l)
        minfs = self.xp.full(pre_a.shape, -np.inf, pre_a.dtype) \
            if minfs is None else minfs
        pre_a = F.where(mask, pre_a, minfs)
        a = F.softmax(pre_a, axis=2)
        # if values in axis=2 are all -inf, they become nan. thus do re-mask.
        a = F.where(self.xp.isnan(a.data),
                    self.xp.zeros(a.shape, dtype=a.dtype), a)
        reshaped_a = a[:, None]  # (b, 1, dec_xl, enc_l)

        # Calculate Weighted Sum
        pre_c = F.broadcast_to(reshaped_a, value.shape) * value
        c = F.sum(pre_c, axis=3, keepdims=True)  # (b, units, dec_xl, 1)
        return c
train_word2vec_subword_chainer_input.py 文件源码 项目:vsmlib 作者: undertherain 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __call__(self, x, context):

        x = F.broadcast_to(x[:, None], (context.shape[0], context.shape[1]))
        x = F.reshape(x, (context.shape[0] * context.shape[1],))

        if args.subword == 'rnn':
            context = context.reshape((context.shape[0] * context.shape[1]))
            e = self.rnn.charRNN(context)

        if args.subword == 'none':
            e = self.embed(context)
            e = F.reshape(e, (e.shape[0] * e.shape[1], e.shape[2]))

        loss = self.loss_func(e, x)
        reporter.report({'loss': loss}, self)
        return loss
lexicons.py 文件源码 项目:nmtrain 作者: philip30 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __call__(self, y, a, ht, y_lex):
    y_dict = F.squeeze(F.batch_matmul(y_lex, a, transa=True), axis=2)
    return (y + F.log(y_dict + self.alpha))

#class LinearInterpolationLexicon(chainer.Chain):
#  def __init__(self, hidden_size):
#    super(LinearInterpolationLexicon, self).__init__(
#      perceptron = chainer.links.Linear(hidden_size, 1)
#    )
#
#  def __call__(self, y, a, ht, y_lex):
#    y      = F.softmax(y)
#    y_dict = F.squeeze(F.batch_matmul(y_lex, a, transa=True), axis=2)
#    gamma  = F.broadcast_to(F.sigmoid(self.perceptron(ht)), y_dict.data.shape)
#    return (gamma * y_dict + (1-gamma) * y)
#
model.py 文件源码 项目:teras 作者: chantera 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __call__(self, x1, x2):
        xp = self.xp
        out_size = self.out_size
        batch_size, len1, dim1 = x1.shape
        if not self.nobias[0]:
            x1 = F.concat((x1, xp.ones((batch_size, len1, 1),
                                       dtype=xp.float32)), axis=2)
            dim1 += 1
        len2, dim2 = x2.shape[1:]
        if not self.nobias[1]:
            x2 = F.concat((x2, xp.ones((batch_size, len2, 1),
                                       dtype=xp.float32)), axis=2)
            dim2 += 1
        x1_reshaped = F.reshape(x1, (batch_size * len1, dim1))
        W_reshaped = F.reshape(F.transpose(self.W, (0, 2, 1)),
                               (dim1, out_size * dim2))
        affine = F.reshape(F.matmul(x1_reshaped, W_reshaped),
                           (batch_size, len1 * out_size, dim2))
        biaffine = F.transpose(
            F.reshape(batch_matmul(affine, x2, transb=True),
                      (batch_size, len1, out_size, len2)),
            (0, 1, 3, 2))
        if not self.nobias[2]:
            biaffine += F.broadcast_to(self.b, biaffine.shape)
        return biaffine
vfm.py 文件源码 项目:vfm 作者: cemoody 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def term_bias(self, bs, train=True):
        """ Compute overall bias and broadcast to shape of batchsize
        """

        shape = (bs, 1,)
        # Bias is drawn from a Gaussian with given mu and log variance
        bs_mu = F.broadcast_to(self.bias_mu.b, shape)
        bs_lv = F.broadcast_to(self.bias_lv.b, shape)
        bias = F.flatten(F.gaussian(bs_mu, bs_lv))

        # Add a very negative log variance so we're sampling
        # from a very narrow distribution about the mean.
        # Useful for validation dataset when we want to only guess
        # the mean.
        if not train:
            bs_lv += self.lv_floor

        # Compute prior on the bias, so compute the KL div
        # from the KL(N(mu_bias, var_bias) | N(0, 1))
        kld = F.gaussian_kl_divergence(self.bias_mu.b, self.bias_lv.b)
        return bias, kld
vfm.py 文件源码 项目:vfm 作者: cemoody 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def term_feat(self, iloc, jloc, ival, jval, bs, nf, train=True):
        # Change all of the shapes to form interaction vectors
        shape = (bs, nf * 2, self.n_dim)
        feat_mu_vec = F.broadcast_to(self.feat_mu_vec.b, shape)
        feat_lv_vec = F.broadcast_to(self.feat_lv_vec.b, shape)
        if not train:
            feat_lv_vec += self.lv_floor

        # Construct the interaction mean and variance
        # iloc is (bs, nf), feat(iloc) is (bs, nf, ndim) and
        # dot(feat, feat) is (bs, nf)
        ivec = F.gaussian(feat_mu_vec + self.feat_delta_mu(iloc),
                          feat_lv_vec + self.feat_delta_lv(iloc))
        jvec = F.gaussian(feat_mu_vec + self.feat_delta_mu(jloc),
                          feat_lv_vec + self.feat_delta_lv(jloc))
        # feat is (bs, )
        feat = dot(F.sum(ivec * jvec, axis=2), ival * jval)

        # Compute the KLD for the group mean vector and variance vector
        kld1 = F.gaussian_kl_divergence(self.feat_mu_vec.b, self.feat_lv_vec.b)
        # Compute the KLD for vector deviations from the group mean and var
        kld2 = F.gaussian_kl_divergence(self.feat_delta_mu.W,
                                        self.feat_delta_lv.W)
        return feat, kld1 + kld2
auto_vfm.py 文件源码 项目:vfm 作者: cemoody 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def term_bias(self, bs, train=True):
        """ Compute overall bias and broadcast to shape of batchsize
        """

        shape = (bs, 1,)
        # Bias is drawn from a Gaussian with given mu and log variance
        bs_mu = F.broadcast_to(self.bias_mu.b, shape)
        bs_lv = F.broadcast_to(self.bias_lv.b, shape)
        bias = F.flatten(F.gaussian(bs_mu, bs_lv))

        # Add a very negative log variance so we're sampling
        # from a very narrow distribution about the mean.
        # Useful for validation dataset when we want to only guess
        # the mean.
        if not train:
            bs_lv += self.lv_floor

        # Compute prior on the bias, so compute the KL div
        # from the KL(N(mu_bias, var_bias) | N(0, 1))
        kld = F.gaussian_kl_divergence(self.bias_mu.b, self.bias_lv.b)
        return bias, kld
models.py 文件源码 项目:chainer-gan-improvements 作者: hvy 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __call__(self, x):
        minibatch_size = x.shape[0]
        activation = F.reshape(self.t(x), (-1, self.n_kernels, self.kernel_dim))
        activation_ex = F.expand_dims(activation, 3)
        activation_ex_t = F.expand_dims(F.transpose(activation, (1, 2, 0)), 0)
        activation_ex, activation_ex_t = F.broadcast(activation_ex, activation_ex_t)
        diff = activation_ex - activation_ex_t

        xp = chainer.cuda.get_array_module(x.data)
        eps = F.expand_dims(xp.eye(minibatch_size, dtype=xp.float32), 1)
        eps = F.broadcast_to(eps, (minibatch_size, self.n_kernels, minibatch_size))
        sum_diff = F.sum(abs(diff), axis=2)
        sum_diff = F.broadcast_to(sum_diff, eps.shape)
        abs_diff = sum_diff + eps

        minibatch_features = F.sum(F.exp(-abs_diff), 2)
        return F.concat((x, minibatch_features), axis=1)
links.py 文件源码 项目:unrolled-gan 作者: musyoku 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __call__(self, x):
        xp = chainer.cuda.get_array_module(x.data)
        batchsize = x.shape[0]
        if self.train_weights == False and self.initial_T is not None:
            self.T.W.data = self.initial_T

        M = F.reshape(self.T(x), (-1, self.num_kernels, self.ndim_kernel))
        M = F.expand_dims(M, 3)
        M_T = F.transpose(M, (3, 1, 2, 0))
        M, M_T = F.broadcast(M, M_T)

        norm = F.sum(abs(M - M_T), axis=2)
        eraser = F.broadcast_to(xp.eye(batchsize, dtype=x.dtype).reshape((batchsize, 1, batchsize)), norm.shape)
        c_b = F.exp(-(norm + 1e6 * eraser))
        o_b = F.sum(c_b, axis=2)

        if self.train_weights == False:
            self.initial_T = self.T.W.data

        return F.concat((x, o_b), axis=1)
models.py 文件源码 项目:wavenet 作者: rampage644 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __call__(self, v, h, label):
        v_t = self.vertical_conv_t(v)
        v_s = self.vertical_conv_s(v)
        to_vertical_t = self.v_to_h_conv_t(v_t)
        to_vertical_s = self.v_to_h_conv_s(v_s)

        # v_gate = self.vertical_gate_conv(v)
        # label bias is added to both vertical and horizontal conv
        # here we take only shape as it should be the same
        label = F.broadcast_to(F.expand_dims(F.expand_dims(self.label(label), -1), -1), v_t.shape)
        v_t, v_s = v_t + label, v_s + label
        v = F.tanh(v_t) * F.sigmoid(v_s)

        h_t = self.horizontal_conv_t(h)
        h_s = self.horizontal_conv_s(h)
        h_t, h_s = h_t + to_vertical_t + label, h_s + to_vertical_s + label
        h = self.horizontal_output(F.tanh(h_t) * F.sigmoid(h_s))

        return v, h
trainer.py 文件源码 项目:chainer-cf-nade 作者: dsanno 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def ordinal_loss(y, mask):
    xp = cuda.get_array_module(y.data)
    volatile = y.volatile
    b, c, n = y.data.shape
    max_y = F.broadcast_to(F.max(y, axis=1, keepdims=True), y.data.shape)
    y = y - max_y
    sum_y = F.broadcast_to(F.expand_dims(F.sum(y, axis=1), 1), y.data.shape)
    down_tri = np.tri(c, dtype=np.float32)
    up_tri = down_tri.T
    w1 = Variable(xp.asarray(down_tri.reshape(c, c, 1, 1)), volatile=volatile)
    w2 = Variable(xp.asarray(up_tri.reshape(c, c, 1, 1)), volatile=volatile)
    h = F.exp(F.expand_dims(y, -1))
    h1 = F.convolution_2d(h, w1)
    h1 = F.convolution_2d(F.log(h1), w1)
    h2 = F.convolution_2d(h, w2)
    h2 = F.convolution_2d(F.log(h2), w2)
    h = F.reshape(h1 + h2, (b, c, n))
    return F.sum((h - sum_y - y) * mask) / b
trainer.py 文件源码 项目:chainer-cf-nade 作者: dsanno 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __forward(self, batch_x, batch_t, weight, train=True):
        xp = self.xp
        x = Variable(xp.asarray(batch_x), volatile=not train)
        t = Variable(xp.asarray(batch_t), volatile=not train)
        y = self.net(x, train=train)

        b, c, n = y.data.shape
        mask = Variable(xp.asarray(np.broadcast_to(weight.reshape(-1, 1, 1), (b, c, n)) * loss_mask(batch_t, self.net.rating_num)), volatile=not train)
        if self.ordinal_weight == 0:
            loss = F.sum(-F.log_softmax(y) * mask) / b
        elif self.ordinal_weight == 1:
            loss = ordinal_loss(y, mask)
        else:
            loss = (1 - self.ordinal_weight) * F.sum(-F.log_softmax(y) * mask) / b + self.ordinal_weight * ordinal_loss(y, mask)

        acc = self.__accuracy(y, t)
        return loss, acc
convolution_rbm.py 文件源码 项目:SeRanet 作者: corochann 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def propup(self, vis):
        """
        This function propagates the visible units activation upwards to the hidden units
        Eq.(7)
        :param vis: Variable Matrix(batch_size, in_channels, image_height, image_width)
                    - given v_sample
        :return: Variable Matrix(batch_size, out_channels, image_height_out, image_width_out)
                 - probability for each hidden units to be h_i=1
        """
        # conv.W: Matrix(out_channels, in_channels, filter height=ksize, filter width=ksize)
        # conv.b: Vec   (out_channels, )
        if self.real == 0:
            pre_sigmoid_activation = self.conv(vis)
        else:
            pre_sigmoid_activation = self.conv(vis / self.std_ch)
        # F.matmul(vis, self.conv.W, transb=True) + F.broadcast_to(self.conv.b, (vis.data.shape[0], self.n_hidden))
        return F.sigmoid(pre_sigmoid_activation)
convolution_rbm.py 文件源码 项目:SeRanet 作者: corochann 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def propdown(self, hid):
        """ This function propagates the hidden units activation downwords to the visible units
        :param hid: Variable Matrix(batch_size, out_channels, image_height_out, image_width_out)  - given h_sample
        :return: Variable Matrix(batch_size, in_channels, image_height, image_width) - probability for each visible units to be v_j = 1
        """
        batch_size = hid.data.shape[0]
        if self.real == 0:
            W_flipped = F.swapaxes(CF.flip(self.conv.W, axes=(2, 3)), axis1=0, axis2=1)
            pre_sigmoid_activation = F.convolution_2d(hid, W_flipped, self.conv.a, pad=self.ksize-1)
                # F.matmul(hid, self.l.W) + F.broadcast_to(self.l.a, (batch_size, self.n_visible))
            v_mean = F.sigmoid(pre_sigmoid_activation)
            #print('W info ', self.conv.W.data.shape, 'W_flipped info ', W_flipped.data.shape)
            #print('W info ', self.conv.W.data[3, 0, 2, 3], 'W_flipped info ', W_flipped.data[0, 3, 8, 7])
            #print('W info ', self.conv.W.data[3, 0, 8, 7], 'W_flipped info ', W_flipped.data[0, 3, 2, 3])
            #print('W info ', self.conv.W.data[19, 0, 4, 0], 'W_flipped info ', W_flipped.data[0, 19, 6, 10])
            #print('pre_sigmoidactivation', F.sum(pre_sigmoid_activation).data)
            #print('v_mean', v_mean.data.shape)
            #print('v_mean sum', F.sum(v_mean).data)
            #print('hid', hid.data.shape)

        else:
            # TODO: check
            W_flipped = F.swapaxes(CF.flip(self.conv.W, axes=(2, 3)), axis1=0, axis2=1)
            v_mean = F.convolution_2d(hid, W_flipped, self.conv.a, pad=self.ksize-1)
        return v_mean
convolution_rbm.py 文件源码 项目:SeRanet 作者: corochann 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def reconstruct(self, v):
        """

        :param v: Variable Matrix(batch_size, in_channels, image_height, image_width)
        :return: reconstructed_v, Variable Matrix(batch_size, in_channels, image_height, image_width)
        """
        batch_size = v.data.shape[0]
        xp = cuda.get_array_module(v.data)
        if self.real == 0:
            h = F.sigmoid(self.conv(v))
        else:
            std_ch = xp.reshape(self.std, (1, self.in_channels, 1, 1))
            h = F.sigmoid(self.conv(v / std_ch))
        # F.sigmoid(F.matmul(v, self.l.W, transb=True) + F.broadcast_to(self.l.b, (batch_size, self.n_hidden)))
        W_flipped = F.swapaxes(CF.flip(self.conv.W, axes=(2, 3)), axis1=0, axis2=1)
        reconstructed_v = F.sigmoid(F.convolution_2d(h, W_flipped, self.conv.a, pad=self.ksize-1))
            # = F.sigmoid(F.matmul(h, self.l.W) + F.broadcast_to(self.l.a, (batch_size, self.n_visible)))
        return reconstructed_v
links.py 文件源码 项目:LSGAN 作者: musyoku 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __call__(self, x):
        xp = chainer.cuda.get_array_module(x.data)
        batchsize = x.shape[0]
        if self.train_weights == False and self.initial_T is not None:
            self.T.W.data = self.initial_T

        M = F.reshape(self.T(x), (-1, self.num_kernels, self.ndim_kernel))
        M = F.expand_dims(M, 3)
        M_T = F.transpose(M, (3, 1, 2, 0))
        M, M_T = F.broadcast(M, M_T)

        norm = F.sum(abs(M - M_T), axis=2)
        eraser = F.broadcast_to(xp.eye(batchsize, dtype=x.dtype).reshape((batchsize, 1, batchsize)), norm.shape)
        c_b = F.exp(-(norm + 1e6 * eraser))
        o_b = F.sum(c_b, axis=2)

        if self.train_weights == False:
            self.initial_T = self.T.W.data

        return F.concat((x, o_b), axis=1)
links.py 文件源码 项目:adgm 作者: musyoku 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __call__(self, x):
        xp = chainer.cuda.get_array_module(x.data)
        batchsize = x.shape[0]
        if self.train_weights == False and self.initial_T is not None:
            self.T.W.data = self.initial_T

        M = F.reshape(self.T(x), (-1, self.num_kernels, self.ndim_kernel))
        M = F.expand_dims(M, 3)
        M_T = F.transpose(M, (3, 1, 2, 0))
        M, M_T = F.broadcast(M, M_T)

        norm = F.sum(abs(M - M_T), axis=2)
        eraser = F.broadcast_to(xp.eye(batchsize, dtype=x.dtype).reshape((batchsize, 1, batchsize)), norm.shape)
        c_b = F.exp(-(norm + 1e6 * eraser))
        o_b = F.sum(c_b, axis=2)

        if self.train_weights == False:
            self.initial_T = self.T.W.data

        return F.concat((x, o_b), axis=1)
distribution.py 文件源码 项目:chainerrl 作者: chainer 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def clip_actions(actions, min_action, max_action):
    min_actions = F.broadcast_to(min_action, actions.shape)
    max_actions = F.broadcast_to(max_action, actions.shape)
    return F.maximum(F.minimum(actions, max_actions), min_actions)
gaussian_policy.py 文件源码 项目:chainerrl 作者: chainer 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def compute_mean_and_var(self, x):
        h = x
        for layer in self.hidden_layers:
            h = self.nonlinearity(layer(h))
        mean = self.mean_layer(h)
        if self.bound_mean:
            mean = bound_by_tanh(mean, self.min_action, self.max_action)
        var = F.broadcast_to(F.softplus(self.var_layer(h)), mean.shape) + \
            self.min_var
        return mean, var
gaussian_policy.py 文件源码 项目:chainerrl 作者: chainer 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __call__(self, x):
        mean = self.hidden_layers(x)
        var = F.broadcast_to(
            F.softplus(self.var_param),
            mean.shape)
        return distribution.GaussianDistribution(mean, var)
not_layer_instance_norm_sample.py 文件源码 项目:instance_normalization_chainer 作者: crcrpar 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def instance_norm(self, x, gamma=None, beta=None):
        mean = F.mean(x, axis=-1)
        mean = F.mean(mean, axis=-1)
        mean = F.broadcast_to(mean[Ellipsis, None, None], x.shape)
        var = F.squared_difference(x, mean)
        std = F.sqrt(var + 1e-5)
        x_hat = (x - mean) / std
        if gamma is not None:
            gamma = F.broadcast_to(gamma[None, Ellipsis, None, None], x.shape)
            beta = F.broadcast_to(beta[None, Ellipsis, None, None], x.shape)
            return gamma * x_hat + beta
        else:
            return x_hat
len_init.py 文件源码 项目:lencon 作者: kiyukuta 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def prepare_decoding(self, state, lengths, train=True):
        state = super().prepare_decoding(state, lengths, train=train)

        x = state['x']
        h = state['h']

        c = F.broadcast_to(self.encoder.c0, (self.batchsize, self.dim_hid))
        lengths = lengths.astype(np.float32)
        lengths = lengths.reshape((self.batchsize, 1))
        c = c * lengths
        return {'x': x, 'c': c, 'h': h}
len_init.py 文件源码 项目:lencon 作者: kiyukuta 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def prepare_decoding(self, state, lengths, train=True):
        state = super().prepare_decoding(state, lengths, train=train)

        x = state['x']
        h = state['h']

        c = F.broadcast_to(self.encoder.c0, (self.batchsize, self.dim_hid))
        lengths = lengths.astype(np.float32)
        lengths = lengths.reshape((self.batchsize, 1))
        c = c * lengths
        return {'x': x, 'c': c, 'h': h}
attenders.py 文件源码 项目:lencon 作者: kiyukuta 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _attend(self, p):
        p = self.xh(p)
        p = F.expand_dims(p, 1)
        p = F.broadcast_to(p, self.shape2)

        h = F.tanh(self.h + p)
        shape3 = (self.batchsize * self.src_len, self.dim_hid)
        h_reshaped = F.reshape(h, shape3)
        weight_reshaped = self.hw(h_reshaped)
        weight = F.reshape(weight_reshaped, (self.batchsize, self.src_len, 1))
        weight = F.where(self.mask, weight, self.minf)
        attention = F.softmax(weight)
        return attention
nn.py 文件源码 项目:chainer-speech-recognition 作者: musyoku 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __call__(self, x):
        return functions.broadcast_to(x, self.shape)
test_matmul.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def setUp(self):
        self.x1 = numpy.random.uniform(
            .5, 1, (batch_size, m, k)).astype(numpy.float32)
        self.x2 = numpy.random.uniform(
            .5, 1, (1, k, n)).astype(numpy.float32)
        self.gy = numpy.random.uniform(
            -1, 1, (batch_size, m, n)).astype(numpy.float32)
        self.op = lambda x, y: F.batch_matmul(
            x, F.broadcast_to(y, (batch_size, k, n)))
        self.forward_answer = numpy.array([
            numpy.dot(self.x1[i], self.x2[0])
            for i in six.moves.range(batch_size)])
test_matmul.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def setUp(self):
        self.x1 = numpy.random.uniform(
            .5, 1, (batch_size, m, k)).astype(numpy.float32)
        self.x2 = numpy.random.uniform(
            .5, 1, (k, n)).astype(numpy.float32)
        self.gy = numpy.random.uniform(
            -1, 1, (batch_size, m, n)).astype(numpy.float32)
        self.op = lambda x, y: F.batch_matmul(
            x, F.broadcast_to(F.expand_dims(y, 0), (batch_size, k, n)))
        self.forward_answer = numpy.array([
            numpy.dot(self.x1[i], self.x2)
            for i in six.moves.range(batch_size)])
test_broadcast.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def check_forward(self, data):
        x = chainer.Variable(data)
        bx = functions.broadcast_to(x, self.out_shape)

        self.assertEqual(bx.data.shape, self.out_shape)
test_broadcast.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_type_check(self):
        x = chainer.Variable(self.data)
        with self.assertRaises(type_check.InvalidType):
            functions.broadcast_to(x, self.out_shape)


问题


面经


文章

微信
公众号

扫码关注公众号