python类leaky_relu()的实例源码

net.py 文件源码 项目:chainermn 作者: chainer 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __call__(self, x):
        h = add_noise(x)
        h = F.leaky_relu(add_noise(self.c0_0(h)))
        h = F.leaky_relu(add_noise(self.bn0_1(self.c0_1(h))))
        h = F.leaky_relu(add_noise(self.bn1_0(self.c1_0(h))))
        h = F.leaky_relu(add_noise(self.bn1_1(self.c1_1(h))))
        h = F.leaky_relu(add_noise(self.bn2_0(self.c2_0(h))))
        h = F.leaky_relu(add_noise(self.bn2_1(self.c2_1(h))))
        h = F.leaky_relu(add_noise(self.bn3_0(self.c3_0(h))))
        return self.l4(h)
model.py 文件源码 项目:chainer-pix2pix 作者: wuhuikai 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __call__(self, x, test=False):
        h = F.leaky_relu(self.c0(x))

        for idx in range(1, self.n_layers):
            h = F.leaky_relu(self['b{}'.format(idx)](self['c{}'.format(idx)](h), test=test))

        h = F.leaky_relu(self['b{}'.format(self.n_layers)](self['c{}'.format(self.n_layers)](h), test=test))
        h = F.sigmoid(self.c(h))

        return h
net.py 文件源码 项目:chainer-pix2pix 作者: pfnet-research 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, in_ch):
        layers = {}
        w = chainer.initializers.Normal(0.02)
        layers['c0'] = L.Convolution2D(in_ch, 64, 3, 1, 1, initialW=w)
        layers['c1'] = CBR(64, 128, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
        layers['c2'] = CBR(128, 256, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
        layers['c3'] = CBR(256, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
        layers['c4'] = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
        layers['c5'] = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
        layers['c6'] = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
        layers['c7'] = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
        super(Encoder, self).__init__(**layers)
net.py 文件源码 项目:chainer-pix2pix 作者: pfnet-research 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __call__(self, x):
        hs = [F.leaky_relu(self.c0(x))]
        for i in range(1,8):
            hs.append(self['c%d'%i](hs[i-1]))
        return hs
net.py 文件源码 项目:chainer-pix2pix 作者: pfnet-research 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, in_ch, out_ch):
        layers = {}
        w = chainer.initializers.Normal(0.02)
        layers['c0_0'] = CBR(in_ch, 32, bn=False, sample='down', activation=F.leaky_relu, dropout=False)
        layers['c0_1'] = CBR(out_ch, 32, bn=False, sample='down', activation=F.leaky_relu, dropout=False)
        layers['c1'] = CBR(64, 128, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
        layers['c2'] = CBR(128, 256, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
        layers['c3'] = CBR(256, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
        layers['c4'] = L.Convolution2D(512, 1, 3, 1, 1, initialW=w)
        super(Discriminator, self).__init__(**layers)
net.py 文件源码 项目:chainer-examples 作者: nocotan 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __call__(self, x):
        h = F.leaky_relu(self.c0_0(x))
        h = F.leaky_relu(self.bn0_1(self.c0_1(h)))
        h = F.leaky_relu(self.bn1_0(self.c1_0(h)))
        h = F.leaky_relu(self.bn1_1(self.c1_1(h)))
        h = F.leaky_relu(self.bn2_0(self.c2_0(h)))
        h = F.leaky_relu(self.bn2_1(self.c2_1(h)))
        h = F.leaky_relu(self.bn3_0(self.c3_0(h)))
        return self.l4(h)
net.py 文件源码 项目:chainer-examples 作者: nocotan 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __call__(self, x):
        h = x
        h = F.leaky_relu(self.c0(h))
        h = F.leaky_relu(self.c1(h))
        h = F.leaky_relu(self.c2(h))
        h = F.leaky_relu(self.c3(h))
        h = F.leaky_relu(self.l4(h))
        h = F.reshape(F.leaky_relu(self.l5(h)),
                      (x.data.shape[0], self.ch, 4, 4))
        h = F.leaky_relu(self.dc3(h))
        h = F.leaky_relu(self.dc2(h))
        h = F.leaky_relu(self.dc1(h))
        h = F.tanh(self.dc0(h))
        return F.mean_absolute_error(h, x)
mnist_dcgan.py 文件源码 项目:chainer-examples 作者: nocotan 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __call__(self, x):
        h = self.bn1(F.leaky_relu(self.l1(x)), test=not self.train)
        h = self.bn2(F.leaky_relu(self.l2(h)), test=not self.train)
        h = self.bn3(F.leaky_relu(self.l3(h)), test=not self.train)
        h = self.bn4(F.leaky_relu(self.l4(h)), test=not self.train)
        y = self.l5(h)
        return y
models.py 文件源码 项目:pose2img 作者: Hi-king 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, in_ch):
        layers = {}
        w = chainer.initializers.Normal(0.02)
        layers['c0'] = L.Convolution2D(in_ch, 64, 3, 1, 1, initialW=w)
        layers['c1'] = CBR(64, 128, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
        layers['c2'] = CBR(128, 256, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
        layers['c3'] = CBR(256, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
        layers['c4'] = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
        layers['c5'] = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
        layers['c6'] = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
        layers['c7'] = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
        super(Encoder, self).__init__(**layers)
models.py 文件源码 项目:pose2img 作者: Hi-king 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __call__(self, x):
        hs = [F.leaky_relu(self.c0(x))]
        for i in range(1, 8):
            hs.append(self['c%d' % i](hs[i - 1]))
        return hs
models.py 文件源码 项目:pose2img 作者: Hi-king 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, in_ch, out_ch, will_concat=True, layers={}):
        self.will_concat = will_concat
        channel_expansion = 2 if will_concat else 1
        w = chainer.initializers.Normal(0.02)
        layers['c0_0'] = CBR(in_ch, 32, bn=False, sample='down', activation=F.leaky_relu, dropout=False)
        layers['c0_1'] = CBR(out_ch, 32, bn=False, sample='down', activation=F.leaky_relu, dropout=False)
        layers['c1'] = CBR(32 * channel_expansion, 128, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
        layers['c2'] = CBR(128, 256, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
        layers['c3'] = CBR(256, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
        layers['c4'] = L.Convolution2D(512, 1, 3, 1, 1, initialW=w)
        super(Discriminator, self).__init__(**layers)
models.py 文件源码 项目:chainer-ADDA 作者: pfnet-research 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __call__(self, x):
        l1 = F.leaky_relu(self.l1(x))
        l2 = F.leaky_relu(self.l2(l1))
        out = self.l3(l2)
        return out
wgan.py 文件源码 项目:chainer-image-generation 作者: fukuta0614 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __call__(self, x, train=True):
        h = F.leaky_relu(self.c0_0(x))
        h = F.leaky_relu(self.bn0_1(self.c0_1(h), test=not train))
        h = F.leaky_relu(self.bn1_1(self.c1_1(h), test=not train))
        h = F.leaky_relu(self.bn2_1(self.c2_1(h), test=not train))
        h = F.leaky_relu(self.bn3_0(self.c3_0(h), test=not train))
        h = self.l4(h)
        return F.sum(h) / h.size
wgan.py 文件源码 项目:chainer-image-generation 作者: fukuta0614 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def __call__(self, x, train=True):
        h = add_noise(x, test=not train)
        h = F.leaky_relu(add_noise(self.c0_0(h), test=not train))
        h = F.leaky_relu(add_noise(self.bn0_1(self.c0_1(h), test=not train), test=not train))
        h = F.leaky_relu(add_noise(self.bn1_1(self.c1_1(h), test=not train), test=not train))
        h = F.leaky_relu(add_noise(self.bn2_1(self.c2_1(h), test=not train), test=not train))
        h = F.leaky_relu(add_noise(self.bn3_0(self.c3_0(h), test=not train), test=not train))
        h = self.l4(h)
        return F.sum(h) / h.size
wgan.py 文件源码 项目:chainer-image-generation 作者: fukuta0614 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __call__(self, x, train=True):
        h = add_noise(x, test=not train)
        h = F.leaky_relu(add_noise(self.c0_0(h), test=not train))
        h = F.leaky_relu(add_noise(self.bn0_1(self.c0_1(h), test=not train), test=not train))
        h = F.leaky_relu(add_noise(self.bn1_0(self.c1_0(h), test=not train), test=not train))
        h = F.leaky_relu(add_noise(self.bn1_1(self.c1_1(h), test=not train), test=not train))
        h = F.leaky_relu(add_noise(self.bn2_0(self.c2_0(h), test=not train), test=not train))
        h = F.leaky_relu(add_noise(self.bn2_1(self.c2_1(h), test=not train), test=not train))
        h = F.leaky_relu(add_noise(self.bn3_0(self.c3_0(h), test=not train), test=not train))
        h = self.l4(h)
        return F.sum(h) / h.size
iwgan.py 文件源码 项目:chainer-image-generation 作者: fukuta0614 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __call__(self, x, train=True):
        h = F.leaky_relu(self.c0_0(x))
        h = F.leaky_relu(self.c0_1(h))
        h = F.leaky_relu(self.c1_0(h))
        h = F.leaky_relu(self.c1_1(h))
        h = F.leaky_relu(self.c2_0(h))
        h = F.leaky_relu(self.c2_1(h))
        h = F.leaky_relu(self.c3_0(h))
        h = self.l4(h)
        return F.sum(h) / h.size
vaegan.py 文件源码 项目:chainer-image-generation 作者: fukuta0614 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __call__(self, x, train=True):
        h1 = F.leaky_relu(self.enc1(x))
        h2 = F.leaky_relu(self.norm2(self.enc2(h1), test=not train))
        h3 = F.leaky_relu(self.norm3(self.enc3(h2), test=not train))
        h4 = F.leaky_relu(self.norm4(self.enc4(h3), test=not train))
        mean = self.mean(h4)
        ln_var = self.ln_var(h4)

        return mean, ln_var
vaewgan.py 文件源码 项目:chainer-image-generation 作者: fukuta0614 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __call__(self, x, train=True):
        h = add_noise(x, test=not train)
        h = F.leaky_relu(add_noise(self.c0_0(h), test=not train))
        h = F.leaky_relu(add_noise(self.bn0_1(self.c0_1(h), test=not train), test=not train))
        h = F.leaky_relu(add_noise(self.bn1_1(self.c1_1(h), test=not train), test=not train))
        h2 = F.leaky_relu(add_noise(self.bn2_1(self.c2_1(h), test=not train), test=not train))
        h3 = F.leaky_relu(add_noise(self.bn3_0(self.c3_0(h2), test=not train), test=not train))
        h = self.l4(h3)
        return F.sum(h) / h.size, h2, h3
vaewgan.py 文件源码 项目:chainer-image-generation 作者: fukuta0614 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __call__(self, x, train=True):
        h = F.leaky_relu(self.c0_0(x))
        h = F.leaky_relu(self.bn0_1(self.c0_1(h), test=not train))
        h = F.leaky_relu(self.bn1_1(self.c1_1(h), test=not train))
        h2 = F.leaky_relu(self.bn2_1(self.c2_1(h), test=not train))
        h3 = F.leaky_relu(self.bn3_0(self.c3_0(h2), test=not train))
        h = self.l4(h3)
        return F.sum(h) / h.size, h2, h3
vaewgan.py 文件源码 项目:chainer-image-generation 作者: fukuta0614 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __call__(self, x, train=True):
        h = F.leaky_relu(self.c0_0(x))
        h = F.leaky_relu(self.bn0_1(self.c0_1(h), test=not train))
        h = F.leaky_relu(self.bn1_1(self.c1_1(h), test=not train))
        h = F.leaky_relu(self.bn2_1(self.c2_1(h), test=not train))
        h = F.leaky_relu(self.bn3_0(self.c3_0(h), test=not train))

        mean = self.mean(h)
        ln_var = self.ln_var(h)

        return mean, ln_var


问题


面经


文章

微信
公众号

扫码关注公众号