python类sigmoid()的实例源码

model.py 文件源码 项目:dgm 作者: ashwindcruz 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def iaf(self, z, h, lin1, lin2):
        ms = F.crelu(lin1(F.concat((z, h), axis=1)))
        ms = lin2(ms)
        m, s = F.split_axis(ms, 2, axis=1)
        s = F.sigmoid(s)
        z = s*z + (1-s)*m
        # pdb.set_trace()
        return z, -F.sum(F.log(s), axis=1)
model.py 文件源码 项目:dgm 作者: ashwindcruz 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def iaf(self, z, h, lin1, lin2):
        ms = F.crelu(lin1(F.concat((z, h), axis=1)))
        ms = lin2(ms)
        m, s = F.split_axis(ms, 2, axis=1)
        s = F.sigmoid(s)
        z = s*z + (1-s)*m
        # pdb.set_trace()
        return z, -F.sum(F.log(s), axis=1)
nn.py 文件源码 项目:chainer-speech-recognition 作者: musyoku 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __call__(self, X):
        pad = self._kernel_size[1] - 1
        WX = self.W(X)
        if pad > 0:
            WX = WX[..., :-pad]

        A, B = functions.split_axis(WX, 2, axis=1)
        H = A * functions.sigmoid(B)
        return H

# Connections
qrnn.py 文件源码 项目:chainer-qrnn 作者: musyoku 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def zoneout(self, U):
        if self._using_zoneout and chainer.config.train:
            return 1 - zoneout(functions.sigmoid(-U), self._zoneout)
        return functions.sigmoid(U)
net.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __call__(self, x, sigmoid=True):
        """AutoEncoder"""
        return self.decode(self.encode(x)[0], sigmoid)
net.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def decode(self, z, sigmoid=True):
        h1 = F.tanh(self.ld1(z))
        h2 = self.ld2(h1)
        if sigmoid:
            return F.sigmoid(h2)
        else:
            return h2
net.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get_loss_func(self, C=1.0, k=1, train=True):
        """Get loss function of VAE.

        The loss value is equal to ELBO (Evidence Lower Bound)
        multiplied by -1.

        Args:
            C (int): Usually this is 1.0. Can be changed to control the
                second term of ELBO bound, which works as regularization.
            k (int): Number of Monte Carlo samples used in encoded vector.
            train (bool): If true loss_function is used for training.
        """
        def lf(x):
            mu, ln_var = self.encode(x)
            batchsize = len(mu.data)
            # reconstruction loss
            rec_loss = 0
            for l in six.moves.range(k):
                z = F.gaussian(mu, ln_var)
                rec_loss += F.bernoulli_nll(x, self.decode(z, sigmoid=False)) \
                    / (k * batchsize)
            self.rec_loss = rec_loss
            self.loss = self.rec_loss + \
                C * gaussian_kl_divergence(mu, ln_var) / batchsize
            return self.loss
        return lf
test_mlp_convolution_2d.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def setUp(self):
        self.mlp = links.MLPConvolution2D(
            3, (96, 96, 96), 11,
            activation=functions.sigmoid,
            use_cudnn=self.use_cudnn)
        self.x = numpy.zeros((10, 3, 20, 20), dtype=numpy.float32)
test_mlp_convolution_2d.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_init(self):
        self.assertIs(self.mlp.activation, functions.sigmoid)

        self.assertEqual(len(self.mlp), 3)
        for i, conv in enumerate(self.mlp):
            self.assertIsInstance(conv, links.Convolution2D)
            self.assertEqual(conv.use_cudnn, self.use_cudnn)
            if i == 0:
                self.assertEqual(conv.W.data.shape, (96, 3, 11, 11))
            else:
                self.assertEqual(conv.W.data.shape, (96, 96, 1, 1))
test_mlp_convolution_2d.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def setUp(self):
        self.mlp = links.MLPConvolution2D(
            3, (96, 96, 96), 11,
            activation=functions.sigmoid,
            use_cudnn=self.use_cudnn)
        self.mlp.to_gpu()
        self.x = cuda.cupy.zeros((10, 3, 20, 20), dtype=numpy.float32)
        self.gy = cuda.cupy.zeros((10, 96, 10, 10), dtype=numpy.float32)
test_sigmoid.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def check_forward(self, x_data, use_cudnn=True):
        x = chainer.Variable(x_data)
        y = functions.sigmoid(x, use_cudnn=use_cudnn)
        self.assertEqual(y.data.dtype, self.dtype)
        y_expect = functions.sigmoid(chainer.Variable(self.x))

        gradient_check.assert_allclose(
            y_expect.data, y.data, **self.check_forward_options)
net.py 文件源码 项目:convolutional_seq2seq 作者: soskek 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __call__(self, x, mask=None):
        x = F.dropout(x, ratio=self.dropout)
        out, pregate = F.split_axis(self.conv(x), 2, axis=1)
        out = out * F.sigmoid(pregate)
        if mask is not None:
            out *= mask
        return out

# TODO: For layers whose output is not directly fed to a gated linear
# unit, we initialize weights from N (0, p 1/nl) where nl is the number of
# input connections for each neuron.
autoencoder.py 文件源码 项目:masalachai 作者: DaikiShimada 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, in_size, hidden_size, activation=F.sigmoid):
        super(Perceptrons, self).__init__(
                fc1 = L.Linear(in_size, hidden_size),
        )
        self.activation = activation
nn_models.py 文件源码 项目:nn_mask 作者: ZitengWang 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _propagate(self, Y, dropout=0.):
        blstm = self.blstm_layer(Y, dropout=dropout)
        relu_1 = F.clipped_relu(self.relu_1(blstm, dropout=dropout))
        relu_2 = F.clipped_relu(self.relu_2(relu_1, dropout=dropout))
        N_mask = F.sigmoid(self.noise_mask_estimate(relu_2))
        X_mask = F.sigmoid(self.speech_mask_estimate(relu_2))
        return N_mask, X_mask
nn_models.py 文件源码 项目:nn_mask 作者: ZitengWang 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def _propagate(self, Y, dropout=0.):
        relu_1 = F.clipped_relu(self.relu_1(Y, dropout=dropout))
        relu_2 = F.clipped_relu(self.relu_2(relu_1, dropout=dropout))
        relu_3 = F.clipped_relu(self.relu_3(relu_2, dropout=dropout))
        N_mask = F.sigmoid(self.noise_mask_estimate(relu_3))
        X_mask = F.sigmoid(self.speech_mask_estimate(relu_3))
        return N_mask, X_mask
function.py 文件源码 项目:ddnn 作者: kunglab 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, use_cudnn=True):
        self._function = "sigmoid"
        self.use_cudnn = use_cudnn
function.py 文件源码 项目:ddnn 作者: kunglab 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __call__(self, x):
        return F.sigmoid(x, self.use_cudnn)
nn_models.py 文件源码 项目:nn-gev 作者: fgnt 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _propagate(self, Y, dropout=0.):
        blstm = self.blstm_layer(Y, dropout=dropout)
        relu_1 = F.clipped_relu(self.relu_1(blstm, dropout=dropout))
        relu_2 = F.clipped_relu(self.relu_2(relu_1, dropout=dropout))
        N_mask = F.sigmoid(self.noise_mask_estimate(relu_2))
        X_mask = F.sigmoid(self.speech_mask_estimate(relu_2))
        return N_mask, X_mask
nn_models.py 文件源码 项目:nn-gev 作者: fgnt 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _propagate(self, Y, dropout=0.):
        relu_1 = F.clipped_relu(self.relu_1(Y, dropout=dropout))
        N_mask = F.sigmoid(self.noise_mask_estimate(relu_1))
        X_mask = F.sigmoid(self.speech_mask_estimate(relu_1))
        return N_mask, X_mask
net.py 文件源码 项目:chainer-VAE 作者: crcrpar 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __call__(self, x, sigmoid=True):
        """AutoEncoder"""
        mu, ln_var = self.encode(x)
        batchsize = len(mu.data)
        # reconstruction loss
        rec_loss = 0
        for l in six.moves.range(self.k):
            z = F.gaussian(mu, ln_var)
            rec_loss += F.bernoulli_nll(x, self.decode(z, sigmoid=False)) \
                / (self.k * batchsize)
        loss = rec_loss + \
            self.C * gaussian_kl_divergence(mu, ln_var) / batchsize
        chainer.report({'loss': loss}, self)
        return loss


问题


面经


文章

微信
公众号

扫码关注公众号