python类max_pooling_2d()的实例源码

models.py 文件源码 项目:chainer-spatial-transformer-networks 作者: hvy 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __call__(self, x):
        h = self.st(x)
        h = F.average_pooling_2d(h, 2, 2)  # For TC and RTS datasets
        h = F.relu(self.conv1(h))
        h = F.max_pooling_2d(h, 2, 2)
        h = F.relu(self.conv2(h))
        h = F.max_pooling_2d(h, 2, 2)
        h = self.fc(h)
        return h
models.py 文件源码 项目:chainer-spatial-transformer-networks 作者: hvy 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def affine_matrix(self, x):
        h = F.max_pooling_2d(x, 2, 2)
        h = F.relu(self.conv1(h))
        h = F.max_pooling_2d(h, 2, 2)
        h = F.relu(self.conv2(h))
        h = F.max_pooling_2d(h, 2, 2)
        theta = F.reshape(self.fc(h), (x.shape[0], 2, 3))
        return theta
yolov2.py 文件源码 项目:chainer-object-detection 作者: dsanno 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __call__(self, x):
        h = F.leaky_relu(self.bias1(self.bn1(self.conv1(x), finetune=self.finetune)), slope=0.1)
        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
        h = F.leaky_relu(self.bias2(self.bn2(self.conv2(h), finetune=self.finetune)), slope=0.1)
        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
        h = F.leaky_relu(self.bias3(self.bn3(self.conv3(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias4(self.bn4(self.conv4(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias5(self.bn5(self.conv5(h), finetune=self.finetune)), slope=0.1)
        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
        h = F.leaky_relu(self.bias6(self.bn6(self.conv6(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias7(self.bn7(self.conv7(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias8(self.bn8(self.conv8(h), finetune=self.finetune)), slope=0.1)
        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
        h = F.leaky_relu(self.bias9(self.bn9(self.conv9(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias10(self.bn10(self.conv10(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias11(self.bn11(self.conv11(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias12(self.bn12(self.conv12(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias13(self.bn13(self.conv13(h), finetune=self.finetune)), slope=0.1)
        high_resolution_feature = h
        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
        h = F.leaky_relu(self.bias14(self.bn14(self.conv14(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias15(self.bn15(self.conv15(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias16(self.bn16(self.conv16(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias17(self.bn17(self.conv17(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias18(self.bn18(self.conv18(h), finetune=self.finetune)), slope=0.1)

        h = F.leaky_relu(self.bias19(self.bn19(self.conv19(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias20(self.bn20(self.conv20(h), finetune=self.finetune)), slope=0.1)

        h2 = high_resolution_feature
        h2 = F.leaky_relu(self.bias21(self.bn21(self.conv21(h2), finetune=self.finetune)), slope=0.1)
        h2 = reorg(h2)

        h = F.concat((h2, h), axis=1)
        h = F.leaky_relu(self.bias22(self.bn22(self.conv22(h), finetune=self.finetune)), slope=0.1)

        h = self.bias23(self.conv23(h))

        return h
yolov2.py 文件源码 项目:chainer-object-detection 作者: dsanno 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def __call__(self, x):
        h = F.leaky_relu(self.bias1(self.bn1(self.conv1(x), finetune=self.finetune)), slope=0.1)
        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
        h = F.dropout(h, 0.25)
        h = F.leaky_relu(self.bias2(self.bn2(self.conv2(h), finetune=self.finetune)), slope=0.1)
        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
        h = F.dropout(h, 0.25)
        h = F.leaky_relu(self.bias3(self.bn3(self.conv3(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias4(self.bn4(self.conv4(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias5(self.bn5(self.conv5(h), finetune=self.finetune)), slope=0.1)
        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
        h = F.dropout(h, 0.25)
        h = F.leaky_relu(self.bias6(self.bn6(self.conv6(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias7(self.bn7(self.conv7(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias8(self.bn8(self.conv8(h), finetune=self.finetune)), slope=0.1)
        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
        h = F.dropout(h, 0.25)
        h = F.leaky_relu(self.bias9(self.bn9(self.conv9(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias10(self.bn10(self.conv10(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias11(self.bn11(self.conv11(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias12(self.bn12(self.conv12(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias13(self.bn13(self.conv13(h), finetune=self.finetune)), slope=0.1)
        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
        h = F.dropout(h, 0.25)
        h = F.leaky_relu(self.bias14(self.bn14(self.conv14(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias15(self.bn15(self.conv15(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias16(self.bn16(self.conv16(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias17(self.bn17(self.conv17(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias18(self.bn18(self.conv18(h), finetune=self.finetune)), slope=0.1)
        h = F.average_pooling_2d(h, h.shape[-2:])
        h = self.fc19(h)
        return h
yolov2_caltech.py 文件源码 项目:chainer-object-detection 作者: dsanno 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __call__(self, x):
        h = F.leaky_relu(self.bias1(self.bn1(self.conv1(x), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias2(self.bn2(self.conv2(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias3(self.bn3(self.conv3(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias4(self.bn4(self.conv4(h), finetune=self.finetune)), slope=0.1)
        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
        h = F.leaky_relu(self.bias5(self.bn5(self.conv5(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias6(self.bn6(self.conv6(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias7(self.bn7(self.conv7(h), finetune=self.finetune)), slope=0.1)
        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
        h = F.leaky_relu(self.bias8(self.bn8(self.conv8(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias9(self.bn9(self.conv9(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias10(self.bn10(self.conv10(h), finetune=self.finetune)), slope=0.1)
        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
        h = F.leaky_relu(self.bias11(self.bn11(self.conv11(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias12(self.bn12(self.conv12(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias13(self.bn13(self.conv13(h), finetune=self.finetune)), slope=0.1)
        high_resolution_feature = h
        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
        h = F.leaky_relu(self.bias14(self.bn14(self.conv14(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias15(self.bn15(self.conv15(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias16(self.bn16(self.conv16(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias17(self.bn17(self.conv17(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias18(self.bn18(self.conv18(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias19(self.bn19(self.conv19(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias20(self.bn20(self.conv20(h), finetune=self.finetune)), slope=0.1)

        h2 = high_resolution_feature
        h2 = F.leaky_relu(self.bias21(self.bn21(self.conv21(h2), finetune=self.finetune)), slope=0.1)
        h2 = reorg(h2)

        h = F.concat((h2, h), axis=1)
        h = F.leaky_relu(self.bias22(self.bn22(self.conv22(h), finetune=self.finetune)), slope=0.1)

        h = self.bias23(self.conv23(h))

        return h
yolov2_caltech.py 文件源码 项目:chainer-object-detection 作者: dsanno 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __call__(self, x):
        h = F.leaky_relu(self.bias1(self.bn1(self.conv1(x), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias2(self.bn2(self.conv2(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias3(self.bn3(self.conv3(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias4(self.bn4(self.conv4(h), finetune=self.finetune)), slope=0.1)
        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
        h = F.leaky_relu(self.bias5(self.bn5(self.conv5(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias6(self.bn6(self.conv6(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias7(self.bn7(self.conv7(h), finetune=self.finetune)), slope=0.1)
        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
        h = F.leaky_relu(self.bias8(self.bn8(self.conv8(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias9(self.bn9(self.conv9(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias10(self.bn10(self.conv10(h), finetune=self.finetune)), slope=0.1)
        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
        h = F.leaky_relu(self.bias11(self.bn11(self.conv11(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias12(self.bn12(self.conv12(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias13(self.bn13(self.conv13(h), finetune=self.finetune)), slope=0.1)
        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)
        h = F.leaky_relu(self.bias14(self.bn14(self.conv14(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias15(self.bn15(self.conv15(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias16(self.bn16(self.conv16(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias17(self.bn17(self.conv17(h), finetune=self.finetune)), slope=0.1)
        h = F.leaky_relu(self.bias18(self.bn18(self.conv18(h), finetune=self.finetune)), slope=0.1)
        h = F.average_pooling_2d(h, h.shape[-2:])
        h = self.fc19(h)
        return h
vgg16.py 文件源码 项目:fcn 作者: wkentaro 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __call__(self, x, t=None):
        h = x
        h = F.relu(self.conv1_1(h))
        h = F.relu(self.conv1_2(h))
        h = F.max_pooling_2d(h, 2, stride=2)

        h = F.relu(self.conv2_1(h))
        h = F.relu(self.conv2_2(h))
        h = F.max_pooling_2d(h, 2, stride=2)

        h = F.relu(self.conv3_1(h))
        h = F.relu(self.conv3_2(h))
        h = F.relu(self.conv3_3(h))
        h = F.max_pooling_2d(h, 2, stride=2)

        h = F.relu(self.conv4_1(h))
        h = F.relu(self.conv4_2(h))
        h = F.relu(self.conv4_3(h))
        h = F.max_pooling_2d(h, 2, stride=2)

        h = F.relu(self.conv5_1(h))
        h = F.relu(self.conv5_2(h))
        h = F.relu(self.conv5_3(h))
        h = F.max_pooling_2d(h, 2, stride=2)

        h = F.dropout(F.relu(self.fc6(h)), ratio=.5)
        h = F.dropout(F.relu(self.fc7(h)), ratio=.5)
        h = self.fc8(h)
        fc8 = h

        self.score = fc8

        if t is None:
            assert not chainer.config.train
            return

        self.loss = F.softmax_cross_entropy(fc8, t)
        self.accuracy = F.accuracy(self.score, t)
        return self.loss
P4CNN_RP.py 文件源码 项目:gconv_experiments 作者: tscohen 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __call__(self, x, t, train=True, finetune=False):

        h = self.l1(x, train, finetune)
        # h = F.dropout(h, self.dr, train)
        h = F.max(h, axis=-3, keepdims=False)

        h = self.l2(h, train, finetune)
        h = F.max(h, axis=-3, keepdims=False)

        h = F.max_pooling_2d(h, ksize=2, stride=2, pad=0)

        h = self.l3(h, train, finetune)
        h = F.max(h, axis=-3, keepdims=False)

        # h = F.dropout(h, self.dr, train)
        h = self.l4(h, train, finetune)
        h = F.max(h, axis=-3, keepdims=False)
        # h = F.dropout(h, self.dr, train)
        h = self.l5(h, train, finetune)
        h = F.max(h, axis=-3, keepdims=False)
        # h = F.dropout(h, self.dr, train)
        h = self.l6(h, train, finetune)
        h = F.max(h, axis=-3, keepdims=False)

        h = self.top(h)

        h = F.max(h, axis=-3, keepdims=False)
        h = F.max(h, axis=-1, keepdims=False)
        h = F.max(h, axis=-1, keepdims=False)

        return F.softmax_cross_entropy(h, t), F.accuracy(h, t)
net.py 文件源码 项目:chainer-fast-neuralstyle 作者: yusuketomoto 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __call__(self, x):
        y1 = F.relu(self.conv1_2(F.relu(self.conv1_1(x))))
        h = F.max_pooling_2d(y1, 2, stride=2)
        y2 = F.relu(self.conv2_2(F.relu(self.conv2_1(h))))
        h = F.max_pooling_2d(y2, 2, stride=2)
        y3 = F.relu(self.conv3_3(F.relu(self.conv3_2(F.relu(self.conv3_1(h))))))
        h = F.max_pooling_2d(y3, 2, stride=2)
        y4 = F.relu(self.conv4_3(F.relu(self.conv4_2(F.relu(self.conv4_1(h))))))
        return [y1, y2, y3, y4]
resnet101.py 文件源码 项目:chainer-fcis 作者: knorth55 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __call__(self, x):
        h = F.relu(self.bn1(self.conv1(x)))
        h = F.max_pooling_2d(h, 3, stride=2, pad=0)
        return h
ResNet50.py 文件源码 项目:chainer-faster-rcnn 作者: mitmul 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __call__(self, x, t, before_fc=False):
        self.clear()
        h = self.bn1(self.conv1(x), test=not self.train)
        h = F.max_pooling_2d(F.relu(h), 3, stride=2)
        h = self.res2(h, self.train)
        h = self.res3(h, self.train)
        h = self.res4(h, self.train)
        h = self.res5(h, self.train)
        h = F.average_pooling_2d(h, h.data.shape[2], stride=1)
        self.feature = h
        return h
resnext_ilsvrc.py 文件源码 项目:resnext 作者: nutszebra 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __call__(self, x, train=False):
        h = self.conv_bn_relu(x, train=train)
        h = F.max_pooling_2d(h, (3, 3), (2, 2), (1, 1))
        for i, n in enumerate(self.block_num):
            for ii in six.moves.range(n):
                h = self['resnext_block_{}_{}'.format(i, ii)](h, train=train)
        batch, channels, height, width = h.data.shape
        h = F.reshape(F.average_pooling_2d(h, (height, width)), (batch, channels))
        return self.linear(h, train)
plane_group_spatial_max_pooling.py 文件源码 项目:GrouPy 作者: tscohen 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def plane_group_spatial_max_pooling(x, ksize, stride=None, pad=0, cover_all=True, use_cudnn=True):
    xs = x.data.shape
    x = F.reshape(x, (xs[0], xs[1] * xs[2], xs[3], xs[4]))
    x = F.max_pooling_2d(x, ksize, stride, pad, cover_all, use_cudnn)
    x = F.reshape(x, (xs[0], xs[1], xs[2], x.data.shape[2], x.data.shape[3]))
    return x
net.py 文件源码 项目:chainer-neural-style 作者: dsanno 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __call__(self, x):
        layer_names = ['1_1', '1_2', 'pool', '2_1', '2_2', 'pool', '3_1', '3_2', '3_3', 'pool', '4_1', '4_2', '4_3']
        layers = {}
        h = x
        for layer_name in layer_names:
            if layer_name == 'pool':
                h = F.max_pooling_2d(h, 2, stride=2)
            else:
                h = F.relu(self['conv' + layer_name](h))
                layers[layer_name] = h
        return layers
net.py 文件源码 项目:chainer-neural-style 作者: dsanno 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __call__(self, x):
        layer_names = ['1_1', '1_2', 'pool', '2_1', '2_2', 'pool', '3_1',
                       '3_2', '3_3', '3_4', 'pool', '4_1', '4_2', '4_3', '4_4',
                       'pool', '5_1', '5_2', '5_3', '5_4']
        layers = {}
        h = x
        for layer_name in layer_names:
            if layer_name == 'pool':
                h = F.max_pooling_2d(h, 2, stride=2)
            else:
                h = F.relu(self['conv' + layer_name](h))
                layers[layer_name] = h
        return layers
ja_lstm_parser_bi.py 文件源码 项目:depccg 作者: masashi-y 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def forward(self, ws, cs, ls, dep_ts=None):
        batchsize = len(ws)
        xp = chainer.cuda.get_array_module(ws[0])
        ws = map(self.emb_word, ws)
        cs = [F.squeeze(
            F.max_pooling_2d(
                self.conv_char(
                    F.expand_dims(
                        self.emb_char(c), 1)), (int(l[0]), 1)))
                    for c, l in zip(cs, ls)]
        xs_f = [F.dropout(F.concat([w, c]),
            self.dropout_ratio, train=self.train) for w, c in zip(ws, cs)]
        xs_b = [x[::-1] for x in xs_f]
        cx_f, hx_f, cx_b, hx_b = self._init_state(xp, batchsize)
        _, _, hs_f = self.lstm_f(hx_f, cx_f, xs_f, train=self.train)
        _, _, hs_b = self.lstm_b(hx_b, cx_b, xs_b, train=self.train)
        hs_b = [x[::-1] for x in hs_b]
        hs = [F.concat([h_f, h_b]) for h_f, h_b in zip(hs_f, hs_b)]


        dep_ys = [self.biaffine_arc(
            F.elu(F.dropout(self.arc_dep(h), 0.32, train=self.train)),
            F.elu(F.dropout(self.arc_head(h), 0.32, train=self.train))) for h in hs]

        if dep_ts is not None:
            heads = dep_ts
        else:
            heads = [F.argmax(y, axis=1) for y in dep_ys]

        cat_ys = [
                self.biaffine_tag(
            F.elu(F.dropout(self.rel_dep(h), 0.32, train=self.train)),
            F.elu(F.dropout(self.rel_head(
                F.embed_id(t, h, ignore_label=IGNORE)), 0.32, train=self.train))) \
                        for h, t in zip(hs, heads)]

        return cat_ys, dep_ys
ja_lstm_parser.py 文件源码 项目:depccg 作者: masashi-y 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def forward(self, ws, cs, ls):
        """
        xs [(w,s,p,y), ..., ]
        w: word, c: char, l: length, y: label
        """
        batchsize = len(ws)
        # cs: [(sentence length, max word length)]
        ws = map(self.emb_word, ws)
        # ls: [(sentence length, char dim)]
        # before conv: (sent len, 1, max word len, char_size)
        # after conv: (sent len, char_size, max word len, 1)
        # after max_pool: (sent len, char_size, 1, 1)
        cs = [F.squeeze(
            F.max_pooling_2d(
                self.conv_char(
                    F.expand_dims(
                        self.emb_char(c), 1)), (l, 1)))
                    for c, l in zip(cs, ls)]
        # [(sentence length, (word_dim + char_dim))]
        xs_f = [F.dropout(F.concat([w, c]),
            self.dropout_ratio, train=self.train) for w, c in zip(ws, cs)]
        xs_b = [x[::-1] for x in xs_f]
        cx_f, hx_f, cx_b, hx_b = self._init_state(batchsize)
        _, _, hs_f = self.lstm_f(hx_f, cx_f, xs_f, train=self.train)
        _, _, hs_b = self.lstm_b(hx_b, cx_b, xs_b, train=self.train)
        hs_b = [x[::-1] for x in hs_b]
        # ys: [(sentence length, number of category)]
        hs = [F.concat([h_f, h_b]) for h_f, h_b in zip(hs_f, hs_b)]

        cat_ys = [self.linear_cat2(F.relu(self.linear_cat1(h))) for h in hs]
        dep_ys = [self.biaffine(
            F.relu(F.dropout(self.linear_dep(h), 0.32, train=self.train)),
            F.relu(F.dropout(self.linear_head(h), 0.32, train=self.train))) for h in hs]

        return cat_ys, dep_ys
ja_lstm_parser_ph.py 文件源码 项目:depccg 作者: masashi-y 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def forward(self, ws, cs):
        batchsize, length, max_word_len = cs.shape
        ws = self.emb_word(ws) # (batch, length, word_dim)
        cs = F.reshape(
            F.max_pooling_2d(
                self.conv_char(
                    F.reshape(
                        self.emb_char(cs),
                        (batchsize * length, 1, max_word_len, 50))), (max_word_len, 1)),
                    (batchsize, length, self.char_dim))

        hs = F.transpose(F.concat([ws, cs], 2), (1, 0, 2))
        hs = F.dropout(hs, self.dropout_ratio, train=self.train)
        hs = F.split_axis(hs, length, 0)
        hs_f = []
        hs_b = []
        self._init_state()
        for h_in_f, h_in_b in zip(hs, reversed(hs)):
            h_f = self.lstm_f2(self.lstm_f1(F.reshape(h_in_f, (batchsize, -1))))
            hs_f.append(h_f)
            h_b = self.lstm_b2(self.lstm_b1(F.reshape(h_in_b, (batchsize, -1))))
            hs_b.append(h_b)

        hs = [F.concat([h_f, h_b]) for h_f, h_b in zip(hs_f, reversed(hs_b))]

        cat_ys = [self.linear_cat2(F.dropout(
            F.elu(self.linear_cat1(h)), 0.5, train=self.train)) for h in hs]

        hs = [F.reshape(h, (length, -1)) for h in \
                F.split_axis(F.transpose(F.stack(hs, 2), (0, 2, 1)), batchsize, 0)]

        dep_ys = [self.biaffine(
            F.relu(F.dropout(self.linear_dep(h), 0.32, train=self.train)),
            F.relu(F.dropout(self.linear_head(h), 0.32, train=self.train))) for h in hs]
        return cat_ys, dep_ys
model.py 文件源码 项目:GroupingNN 作者: tokkuman 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __call__(self, x, train=True):
        h = F.max_pooling_2d(self.bn2(F.relu(self.conv1(x))), 3, stride=3)
        h = F.max_pooling_2d(self.bn4(F.relu(self.conv3(h))), 3, stride=3)
        h = F.max_pooling_2d(self.bn6(F.relu(self.conv5(h))), 2, stride=2)
        h = F.dropout(F.relu(self.fc7(h)), train=train)
        h = F.dropout(F.relu(self.fc8(h)), train=train)
        y = self.fc9(h)
        return y
dqn.py 文件源码 项目:DeepLearning 作者: Wanwannodao 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __call__(self, x):
        x = x/255.
        h = F.relu(self.conv1(x))
        h = F.relu(self.conv2(h))
        h = F.relu(self.conv3(h))
        #h = F.max_pooling_2d(F.relu(self.bnorm4(self.conv4(h))), 2, stride=2)
        h = F.relu(self.fc1(h))
        y = self.fc2(h)        
        return y


问题


面经


文章

微信
公众号

扫码关注公众号