python类SGDSolver()的实例源码

train.py 文件源码 项目:faster_rcnn_logo 作者: romyny 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and
            cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
            # RPN can only use precomputed normalization because there are no
            # fixed statistics to compute a priori
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED

        if cfg.TRAIN.BBOX_REG:
            print 'Computing bounding-box regression targets...'
            self.bbox_means, self.bbox_stds = \
                    rdl_roidb.add_bbox_regression_targets(roidb)
            print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
train.py 文件源码 项目:Faster_RCNN_Training_Toolkit 作者: VerseChow 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and
            cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
            # RPN can only use precomputed normalization because there are no
            # fixed statistics to compute a priori
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED

        if cfg.TRAIN.BBOX_REG:
            print 'Computing bounding-box regression targets...'
            self.bbox_means, self.bbox_stds = \
                    rdl_roidb.add_bbox_regression_targets(roidb)
            print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
train.py 文件源码 项目:KITTI-detection-OHEM 作者: manutdzou 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and
            cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
            # RPN can only use precomputed normalization because there are no
            # fixed statistics to compute a priori
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED

        if cfg.TRAIN.BBOX_REG:
            print 'Computing bounding-box regression targets...'
            self.bbox_means, self.bbox_stds = \
                    rdl_roidb.add_bbox_regression_targets(roidb)
            print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
train.py 文件源码 项目:ohem 作者: abhi2610 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and
            cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
            # RPN can only use precomputed normalization because there are no
            # fixed statistics to compute a priori
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED

        if cfg.TRAIN.BBOX_REG:
            print 'Computing bounding-box regression targets...'
            self.bbox_means, self.bbox_stds = \
                    rdl_roidb.add_bbox_regression_targets(roidb)
            print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
train.py 文件源码 项目:py-faster-rcnn-dockerface 作者: natanielruiz 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and
            cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
            # RPN can only use precomputed normalization because there are no
            # fixed statistics to compute a priori
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED

        if cfg.TRAIN.BBOX_REG:
            print 'Computing bounding-box regression targets...'
            self.bbox_means, self.bbox_stds = \
                    rdl_roidb.add_bbox_regression_targets(roidb)
            print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
train.py 文件源码 项目:caffe_multi_label_code 作者: runningJ 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def __init__(self):
        if pa.GPU==True:
            caffe.set_device(pa.device)
            caffe.set_mode_gpu()
        else:
            caffe.set_mode_cpu()
        self.solver=caffe.SGDSolver(pa.solver)
        if pa.pretrain!="":
            self.solver.net.copy_from(pa.pretrain)
        self.solver_param=caffe_pb2.SolverParameter()
        with open(pa.solver,'rt') as f:
            pb2.text_format.Merge(f.read(),self.solver_param)

        #self.output_dir=pa.output_dir
        self.solver.net.layers[0].set_queue()
train.py 文件源码 项目:jenova 作者: dungba88 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and
            cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
            # RPN can only use precomputed normalization because there are no
            # fixed statistics to compute a priori
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED

        if cfg.TRAIN.BBOX_REG:
            print 'Computing bounding-box regression targets...'
            self.bbox_means, self.bbox_stds = \
                    rdl_roidb.add_bbox_regression_targets(roidb)
            print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
train.py 文件源码 项目:PVANet-FACE 作者: twmht 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, imdb, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and
            cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
            # RPN can only use precomputed normalization because there are no
            # fixed statistics to compute a priori
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED

        if cfg.TRAIN.BBOX_REG:
            print 'Computing bounding-box regression targets...'
            self.bbox_means, self.bbox_stds = \
                    rdl_roidb.add_bbox_regression_targets(roidb)
            print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_imdb(imdb)
        self.solver.net.layers[0].set_roidb(roidb)
train.py 文件源码 项目:craftGBD 作者: craftGBD 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and
            cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
            # RPN can only use precomputed normalization because there are no
            # fixed statistics to compute a priori
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED

        if cfg.TRAIN.BBOX_REG:
            print 'Computing bounding-box regression targets...'
            self.bbox_means, self.bbox_stds = \
                    rdl_roidb.add_bbox_regression_targets(roidb)
            print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
train.py 文件源码 项目:py-R-FCN 作者: YuwenXiong 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and
            cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
            # RPN can only use precomputed normalization because there are no
            # fixed statistics to compute a priori
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED

        if cfg.TRAIN.BBOX_REG:
            print 'Computing bounding-box regression targets...'
            self.bbox_means, self.bbox_stds = \
                    rdl_roidb.add_bbox_regression_targets(roidb)
            print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
phocnet_trainer.py 文件源码 项目:phocnet 作者: ssudholt 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __get_solver(self, solver_proto_path):
        '''
        Returns a caffe.SGDSolver for the given protofile path,
        ignoring Caffe command line chatter if debug mode is not set
        to True.
        '''
        if not self.debug_mode:
            # disable Caffe init chatter when not in debug
            with Suppressor():
                return caffe.SGDSolver(solver_proto_path)
        else:
            return caffe.SGDSolver(solver_proto_path)
train.py 文件源码 项目:objectattention 作者: cdevin 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and
            cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
            # RPN can only use precomputed normalization because there are no
            # fixed statistics to compute a priori
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED

        if cfg.TRAIN.BBOX_REG:
            print 'Computing bounding-box regression targets...'
            self.bbox_means, self.bbox_stds = \
                    rdl_roidb.add_bbox_regression_targets(roidb)
            print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
train.py 文件源码 项目:lsi-faster-rcnn 作者: cguindel 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and
            cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
            # RPN can only use precomputed normalization because there are no
            # fixed statistics to compute a priori
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED

        if cfg.TRAIN.BBOX_REG:
            print 'Computing bounding-box regression targets...'
            self.bbox_means, self.bbox_stds = \
                    rdl_roidb.add_bbox_regression_targets(roidb)
            print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
SolverWrapper.py 文件源码 项目:MNC 作者: daijifeng001 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, maskdb, output_dir, imdb,
                 pretrained_model=None):
        self.output_dir = output_dir
        if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and
                cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
            # RPN can only use precomputed normalization because there are no
            # fixed statistics to compute a priori
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED

        if cfg.TRAIN.BBOX_REG:
            if not cfg.CFM_MODE:
                print 'Computing bounding-box regression targets...'
                self.bbox_means, self.bbox_stds = add_bbox_regression_targets(roidb)
                print 'done'
            else:
                # Pre-defined mcg bbox_mean and bbox_std
                # We store them on disk to avoid disk level IO
                # multiple times (mcg boxes are stored on disk)
                mean_cache = './data/cache/mcg_bbox_mean.npy'
                std_cache = './data/cache/mcg_bbox_std.npy'
                roidb_dir = imdb._roidb_path
                if os.path.exists(mean_cache) and os.path.exists(std_cache):
                    self.bbox_means = np.load(mean_cache)
                    self.bbox_stds = np.load(std_cache)
                else:
                    self.bbox_means, self.bbox_stds = compute_mcg_mean_std(roidb_dir, imdb.num_classes)

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print 'Loading pretrained model weights from {:s}'.format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)
        if not cfg.CFM_MODE:
            self.solver.net.layers[0].set_roidb(roidb)
            if cfg.MNC_MODE:
                self.solver.net.layers[0].set_maskdb(maskdb)
        else:
            self.solver.net.layers[0].set_image_info(imdb, self.bbox_means, self.bbox_stds)
train.py 文件源码 项目:person_search 作者: ShuangLI59 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 previous_state=None, pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and
            cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
            # RPN can only use precomputed normalization because there are no
            # fixed statistics to compute a priori
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED

        if cfg.TRAIN.BBOX_REG:
            print 'Computing bounding-box regression targets...'
            self.bbox_means, self.bbox_stds = \
                    rdl_roidb.add_bbox_regression_targets(roidb)
            print 'done'

        # Change the snapshot file name
        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)
        infix = ('_' + cfg.TRAIN.SNAPSHOT_INFIX) \
                if cfg.TRAIN.SNAPSHOT_INFIX != '' else ''
        filename = self.solver_param.snapshot_prefix + infix
        filename = os.path.join(self.output_dir, filename)
        self.solver_param.snapshot_prefix = filename
        print 'Change the snapshot prefix to', self.solver_param.snapshot_prefix
        with tempfile.NamedTemporaryFile(delete=False) as f:
            f.write(str(self.solver_param))
            solver_prototxt = f.name
            print 'Create temporary solver prototxt at', solver_prototxt

        self.solver = caffe.SGDSolver(solver_prototxt)
        if previous_state is not None:
            print ('Restoring solver state from {:s}').format(previous_state)
            self.solver.restore(previous_state)
        elif pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver.net.layers[0].set_roidb(roidb)


问题


面经


文章

微信
公众号

扫码关注公众号