python类set_mode_gpu()的实例源码

extract_vgg_features_from_video.py 文件源码 项目:AMBR 作者: Algomorph 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, args):
        super().__init__(args, with_video_output=False)
        if self.vgg_model_path is None:
            self.vgg_model_path = "/media/" + getpass.getuser() + "/Data/AMBR_data/ml"
        self.vgg_model_filename = os.path.join(self.vgg_model_path, self.vgg_model_filename)
        self.vgg_pretrained_filename = os.path.join(self.vgg_model_path, self.vgg_pretrained_filename)

        if self.output_datafile is None:
            self.output_datafile = "{:s}_features.npz".format(self.in_video[:-4])
        self.prev_frame_centroid = None
        if self.caffe_cpu:
            caffe.set_mode_cpu()
        else:
            caffe.set_mode_gpu()

        self.extractor = None
        self.blank_features = None
        if not self.no_vgg:
            self.extractor = VGGFeatureExtractor(model_file=self.vgg_model_filename,
                                                 pretrained_file=self.vgg_pretrained_filename)
            self.blank_features = self.extractor.extract_single(np.zeros((256, 256, 3), dtype=np.uint8), blobs=['fc7'])[
                'fc7']
        self.features = []
        self.present_flags = []
region_classification.py 文件源码 项目:indus-script-ocr 作者: tpsatish95 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def get_predictions(region_crops):
    if os.environ["IS_GPU"]:
        caffe.set_device(0)
        caffe.set_mode_gpu()
    else:
        caffe.set_mode_cpu()

    classifier = caffe.Classifier(os.path.join(os.environ["TEXT_NOTEXT_MODELS_DIR"], "deploy.prototxt"),
                                  os.path.join(os.environ["TEXT_NOTEXT_MODELS_DIR"], "weights.caffemodel"),
                                  mean=np.array([104, 117, 123], dtype='f4'),
                                  image_dims=[224, 224],
                                  raw_scale=255.0,
                                  channel_swap=[2, 1, 0])

    LOGGER.info("Classifying " + str(len(region_crops)) + " inputs.")

    predictions = classifier.predict(region_crops)

    return predictions
init.py 文件源码 项目:jenova 作者: dungba88 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def run(self, _, app_context):
        """run the action"""
        import caffe

        # init CPU/GPU mode
        cpu_mode = app_context.get_config('caffe.cpu_mode')
        if cpu_mode:
            caffe.set_mode_cpu()
        else:
            caffe.set_mode_gpu()
            caffe.set_device(0)

        # load test model
        test_model_file = "models/" + app_context.get_config('caffe.test_model')
        trained_data_file = "cache/data/" + app_context.get_config('caffe.trained_data')
        test_net = caffe.Net(test_model_file, trained_data_file, caffe.TEST)
        app_context.params['test_net'] = test_net

        logging.getLogger(__name__).info('Loaded neural network: ' + trained_data_file)
tools.py 文件源码 项目:Style-Transfer-In-Tensorflow 作者: JiangQH 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _loadModel(self, model_dirs, id):
        print 'loading model...from{}'.format(model_dirs)
        model_file = osp.join(model_dirs, 'vgg16.prototxt')
        model_weights = osp.join(model_dirs, 'vgg16.caffemodel')
        mean_file = osp.join(model_dirs, 'vgg16_mean.npy')
        if id == -1:
            caffe.set_mode_cpu()
        else:
            caffe.set_mode_gpu()
            caffe.set_device(id)
        net = caffe.Net(model_file, model_weights, caffe.TEST)
        transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
        transformer.set_mean('data', np.load(mean_file).mean(1).mean(1))
        transformer.set_channel_swap('data', (2, 1, 0))
        transformer.set_transpose('data', (2, 0, 1))
        #transformer.set_raw_scale('data', 255)
        self.net = net
        self.transformer = transformer
        self.style_layers = VGG16_STYLES
        self.content_layers = VGG16_CONTENTS
        self.layers = VGG16_LAYERS
        print 'model loading done'
ExtractImageFeat_caffe.py 文件源码 项目:ml_idiot 作者: songjun54cm 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def get_caffe_model(caffe_dir, caffe_model, gpu=True,
                    image_dims=(256, 256),
                    mean_file='default',
                    raw_scale=255.0,
                    channel_swap=(2,1,0),
                    input_scale=None):
    if mean_file == 'default':
        mean_file = os.path.join(caffe_dir, 'python', 'caffe', 'imagenet', 'ilsvrc_2012_mean.npy')
    model_path = os.path.join(caffe_dir, 'models', caffe_model, '%s.caffemodel'%caffe_model)
    model_def = os.path.join(caffe_dir, 'models', caffe_model, 'deploy.prototxt')

    print('Loading mean file %s' % mean_file)
    mean = np.load(mean_file).mean(1).mean(1)
    if gpu:
        caffe.set_mode_gpu()
    else:
        caffe.set_mode_cpu()
    net = caffe.Classifier(model_def, model_path,
                           image_dims=image_dims, mean=mean,
                           input_scale=input_scale, raw_scale=raw_scale,
                           channel_swap=channel_swap)
    return net
cnnmodel.py 文件源码 项目:SceneUnderstanding_CIARP_2017 作者: verlab 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, model_path, deploy_path, mean, crop = 227, layer = 'fc7'):



        self.net = caffe.Net(deploy_path, model_path, caffe.TEST)
        self.transformer = caffe.io.Transformer({'data': self.net.blobs['data'].data.shape})

        self.transformer.set_mean('data', mean)
        self.transformer.set_transpose('data', (2, 0, 1))
        self.transformer.set_channel_swap('data', (2, 1, 0))
        self.transformer.set_raw_scale('data', 255.0)
        self.crop = crop
        self.image = []
        self.layer = layer
        caffe.set_mode_gpu()

        print "Mean:", mean
classifier.py 文件源码 项目:img_classifier_prepare 作者: zonekey 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, deploy, pretrained, mean, labels, gpu = False):
        if gpu:
            caffe.set_mode_gpu()
        else:
            caffe.set_mode_cpu()    # in windows, only CPU mode supported

        self.__labels = self.load_labels(labels);
        mean_ar = self.convert(mean)

        if True:
            self.__net = caffe.Classifier(deploy, pretrained,
                    mean = mean_ar.mean(1).mean(1),
                    channel_swap = (2, 1, 0), 
                    raw_scale = 255,
                    image_dims = (256, 256))
        else: 
            self.__net = caffe.Net(deploy, pretrained, caffe.TEST)
            print self.__net.blobs['data'].data.shape    

            self.__transformer = caffe.io.Transformer({'data': self.__net.blobs['data'].data.shape})
            self.__transformer.set_transpose('data', (2,0,1)) # height*width*channel -> channel*height*width
            self.__transformer.set_mean('data', mean_ar)
            self.__transformer.set_raw_scale('data', 255)
            self.__transformer.set_channel_swap('data', (2,1,0)) # RGB -> BGR
action_caffe.py 文件源码 项目:anet2016-cuhk 作者: yjxiong 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, net_proto, net_weights, device_id, input_size=None):
        caffe.set_mode_gpu()
        caffe.set_device(device_id)
        self._net = caffe.Net(net_proto, net_weights, caffe.TEST)

        input_shape = self._net.blobs['data'].data.shape

        if input_size is not None:
            input_shape = input_shape[:2] + input_size

        transformer = caffe.io.Transformer({'data': input_shape})

        if self._net.blobs['data'].data.shape[1] == 3:
            transformer.set_transpose('data', (2, 0, 1))  # move image channels to outermost dimension
            transformer.set_mean('data', np.array([104, 117, 123]))  # subtract the dataset-mean value in each channel
        else:
            pass # non RGB data need not use transformer

        self._transformer = transformer

        self._sample_shape = self._net.blobs['data'].data.shape
DeepDream.py 文件源码 项目:QScode 作者: PierreHao 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self):
        caffe.set_mode_gpu()
        #caffe.set_device(0)
        model_path = '../models/bvlc_googlenet/' # substitute your path here
        net_fn   = model_path + 'deploy.prototxt'
        param_fn = model_path + 'bvlc_googlenet.caffemodel'
        model = caffe.io.caffe_pb2.NetParameter()
        text_format.Merge(open(net_fn).read(), model)
        model.force_backward = True #backward to input layer
        open('tmp.prototxt', 'w').write(str(model))
        self.net = caffe.Classifier('tmp.prototxt', param_fn,
                       mean = np.float32([104.0, 116.0, 122.0]), 
                       channel_swap = (2,1,0))
        # for the mode guide, if flag = 1               
        self.flag = 0
        self.epoch = 20
        self.end = 'inception_4c/output'
        #self.end = 'conv4'
train.py 文件源码 项目:QScode 作者: PierreHao 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, pretrained_model=None):
        """Initialize the SolverWrapper."""

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)      
        self.solver_param = caffe.io.caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            text_format.Merge(f.read(), self.solver_param)

        if self.solver_param.solver_mode == 1:
            caffe.set_mode_gpu()
            caffe.set_device(params.gpu_id)
            print 'Use GPU', params.gpu_id, 'to train'
        else:
            print 'Use CPU to train'
        #initial python data layer    
        self.solver.net.layers[0].set_db()
feature.py 文件源码 项目:QScode 作者: PierreHao 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def init_detection_net(self, gpu_id=0, prototxt=None, caffemodel=None):
        """init extraction network"""
        cfg.TEST.HAS_RPN = True  # Use RPN for proposals
        if prototxt is None:
            prototxt = os.path.join(cfg.ROOT_DIR, 'models', NETS['zf'][0],
                            'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')
        if caffemodel is None:
            caffemodel = os.path.join(cfg.ROOT_DIR, 'output/default/train',
                              NETS['zf'][1])

        if not os.path.isfile(caffemodel):
            raise IOError(('{:s} not found.\nDid you run ./data/script/'
                       'fetch_faster_rcnn_models.sh?').format(caffemodel))

        #np.random.seed(cfg.RNG_SEED)
        caffe.set_random_seed(cfg.RNG_SEED)       
        caffe.set_mode_gpu()
        caffe.set_device(gpu_id)        
        self.net_d = caffe.Net(prototxt, caffemodel, caffe.TEST)
DeepDream.py 文件源码 项目:QScode 作者: PierreHao 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self):
        caffe.set_mode_gpu()
        #caffe.set_device(0)
        model_path = '../models/bvlc_googlenet/' # substitute your path here
        net_fn   = model_path + 'deploy.prototxt'
        param_fn = model_path + 'bvlc_googlenet.caffemodel'
        model = caffe.io.caffe_pb2.NetParameter()
        text_format.Merge(open(net_fn).read(), model)
        model.force_backward = True #backward to input layer
        open('tmp.prototxt', 'w').write(str(model))
        self.net = caffe.Classifier('tmp.prototxt', param_fn,
                       mean = np.float32([104.0, 116.0, 122.0]), 
                       channel_swap = (2,1,0))
        # for the mode guide, if flag = 1               
        self.flag = 0
        self.epoch = 20
        self.end = 'inception_4c/output'
        #self.end = 'conv4'
train.py 文件源码 项目:QScode 作者: PierreHao 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, pretrained_model=None):
        """Initialize the SolverWrapper."""

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)      
        self.solver_param = caffe.io.caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            text_format.Merge(f.read(), self.solver_param)

        if self.solver_param.solver_mode == 1:
            caffe.set_mode_gpu()
            caffe.set_device(params.gpu_id)
            print 'Use GPU', params.gpu_id, 'to train'
        else:
            print 'Use CPU to train'
        #initial python data layer    
        #self.solver.net.layers[0].set_db()
train_net_multi.py 文件源码 项目:caffe-model 作者: soeaver 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def solve(proto, gpus, uid, rank, max_iter):
    caffe.set_mode_gpu()
    caffe.set_device(gpus[rank])
    caffe.set_solver_count(len(gpus))
    caffe.set_solver_rank(rank)
    caffe.set_multiprocess(True)

    solver = caffe.SGDSolver(proto)
    if rank == 0:
        # solver.restore(_snapshot)
        solver.net.copy_from(_weights)

    solver.net.layers[0].get_gpu_id(gpus[rank])

    nccl = caffe.NCCL(solver, uid)
    nccl.bcast()
    solver.add_callback(nccl)

    if solver.param.layer_wise_reduce:
        solver.net.after_backward(nccl)

    for _ in range(max_iter):
        solver.step(1)
test_baseline_dex.py 文件源码 项目:age 作者: ly015 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_imdb_wiki_model():

    # not finished

    sample_lst_fn = 'datasets/IMDB-WIKI/Annotations/imdb_wiki_good_test.json'
    img_root = 'datasets/IMDB-WIKI/Images'
    batch_size = 128
    num_batch = 10
    gpu_id = 0

    fn_model = 'datasets/IMDB-WIKI/caffe_models/age.prototxt'
    fn_weight = 'datasets/IMDB-WIKI/caffe_models/dex_imdb_wiki.caffemodel'
    imagenet_mean = [[[104, 117, 123]]]


    caffe.set_device(gpu_id)
    caffe.set_mode_gpu()
    model = caffemodel(fn_model, fn_weight, caffe.TEST)
example.py 文件源码 项目:WasIstDasFuer1Drone 作者: magnusja 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def get_net(caffemodel, deploy_file, use_gpu=True):
    """
    Returns an instance of caffe.Net

    Arguments:
    caffemodel -- path to a .caffemodel file
    deploy_file -- path to a .prototxt file

    Keyword arguments:
    use_gpu -- if True, use the GPU for inference
    """
    if use_gpu:
        caffe.set_mode_gpu()

    # load a new model
    return caffe.Net(deploy_file, caffemodel, caffe.TEST)
example.py 文件源码 项目:WasIstDasFuer1Drone 作者: magnusja 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def get_net(caffemodel, deploy_file, use_gpu=True):
    """
    Returns an instance of caffe.Net

    Arguments:
    caffemodel -- path to a .caffemodel file
    deploy_file -- path to a .prototxt file

    Keyword arguments:
    use_gpu -- if True, use the GPU for inference
    """
    if use_gpu:
        caffe.set_mode_gpu()

    # load a new model
    return caffe.Net(deploy_file, caffemodel, caffe.TEST)
train_faster_rcnn_alt_opt.py 文件源码 项目:adversarial-frcnn 作者: xiaolonw 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def _init_caffe(cfg):
    """Initialize pycaffe in a training process.
    """

    import caffe
    # fix the random seeds (numpy and caffe) for reproducibility
    np.random.seed(cfg.RNG_SEED)
    caffe.set_random_seed(cfg.RNG_SEED)
    # set up caffe
    caffe.set_mode_gpu()
    caffe.set_device(cfg.GPU_ID)
server.py 文件源码 项目:vqa-mcb 作者: akirafukui 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def setup():
    global resnet_mean
    global resnet_net
    global vqa_net
    # data provider
    vqa_data_provider_layer.CURRENT_DATA_SHAPE = EXTRACT_LAYER_SIZE

    # mean substraction
    blob = caffe.proto.caffe_pb2.BlobProto()
    data = open( RESNET_MEAN_PATH , 'rb').read()
    blob.ParseFromString(data)
    resnet_mean = np.array( caffe.io.blobproto_to_array(blob)).astype(np.float32).reshape(3,224,224)
    resnet_mean = np.transpose(cv2.resize(np.transpose(resnet_mean,(1,2,0)), (448,448)),(2,0,1))

    # resnet
    caffe.set_device(GPU_ID)
    caffe.set_mode_gpu()

    resnet_net = caffe.Net(RESNET_LARGE_PROTOTXT_PATH, RESNET_CAFFEMODEL_PATH, caffe.TEST)

    # our net
    vqa_net = caffe.Net(VQA_PROTOTXT_PATH, VQA_CAFFEMODEL_PATH, caffe.TEST)

    # uploads
    if not os.path.exists(UPLOAD_FOLDER):
        os.makedirs(UPLOAD_FOLDER)

    if not os.path.exists(VIZ_FOLDER):
        os.makedirs(VIZ_FOLDER)

    print 'Finished setup'
train_faster_rcnn_alt_opt.py 文件源码 项目:faster-rcnn-resnet 作者: Eniac-Xie 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def _init_caffe(cfg):
    """Initialize pycaffe in a training process.
    """

    import caffe
    # fix the random seeds (numpy and caffe) for reproducibility
    np.random.seed(cfg.RNG_SEED)
    caffe.set_random_seed(cfg.RNG_SEED)
    # set up caffe
    caffe.set_mode_gpu()
    caffe.set_device(cfg.GPU_ID)


问题


面经


文章

微信
公众号

扫码关注公众号