python类TEST的实例源码

posenet_utils.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, model_file, weights_file, mean_file): 
        if not os.path.exists(model_file) or \
           not os.path.exists(weights_file) or \
           not os.path.exists(mean_file): 
            raise ValueError('Invalid model: {}, \nweights file: {}, \nmean file: {}'
                             .format(model_file, weights_file, mean_file))

        # Init caffe with model
        self.net_ = caffe.Net(model_file, weights_file, caffe.TEST)
        self.mean_file_ = mean_file
        self.input_shape_ = self.net_.blobs['data'].data.shape    

        # Initialize mean file
        blob_meanfile = caffe.proto.caffe_pb2.BlobProto()
        data_meanfile = open(mean_file , 'rb' ).read()
        blob_meanfile.ParseFromString(data_meanfile)
        meanfile = np.squeeze(np.array(caffe.io.blobproto_to_array(blob_meanfile)))
        self.meanfile_ = meanfile.transpose((1,2,0))
        self.meanfile_image_ = None
fast_rcnn_utils.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, rcnn_dir, net='vgg_cnn_m_1024'): 
        model_file = os.path.join(
            rcnn_dir, 'models', 
            FastRCNNDescription.NETS[net][0], 'test.prototxt')
        pretrained_file = os.path.join(
            rcnn_dir, 'data', 'fast_rcnn_models', 
            FastRCNNDescription.NETS[net][1])

        if not os.path.exists(model_file) or \
           not os.path.exists(pretrained_file): 
            raise ValueError('Unknown net {}, use one of {}, \n'
                             'model: {}, \npretrained file: {}'
                             .format(net, 
                                     FastRCNNDescription.NETS.keys(), 
                                     model_file, pretrained_file))

        # Init caffe with model
        cfg.TEST.BBOX_REG = False
        caffe.Net.__init__(self, model_file, pretrained_file, caffe.TEST)
action_caffe.py 文件源码 项目:temporal-segment-networks 作者: yjxiong 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, net_proto, net_weights, device_id, input_size=None):
        caffe.set_mode_gpu()
        caffe.set_device(device_id)
        self._net = caffe.Net(net_proto, net_weights, caffe.TEST)

        input_shape = self._net.blobs['data'].data.shape

        if input_size is not None:
            input_shape = input_shape[:2] + input_size

        transformer = caffe.io.Transformer({'data': input_shape})

        if self._net.blobs['data'].data.shape[1] == 3:
            transformer.set_transpose('data', (2, 0, 1))  # move image channels to outermost dimension
            transformer.set_mean('data', np.array([104, 117, 123]))  # subtract the dataset-mean value in each channel
        else:
            pass # non RGB data need not use transformer

        self._transformer = transformer

        self._sample_shape = self._net.blobs['data'].data.shape
action_caffe.py 文件源码 项目:Video-Classification-Action-Recognition 作者: qijiezhao 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, net_proto, net_weights, device_id, input_size=None):
        caffe.set_mode_gpu()
        caffe.set_device(device_id)
        self._net = caffe.Net(net_proto, net_weights, caffe.TEST)

        input_shape = self._net.blobs['data'].data.shape

        if input_size is not None:
            input_shape = input_shape[:2] + input_size

        transformer = caffe.io.Transformer({'data': input_shape})

        if self._net.blobs['data'].data.shape[1] == 3:
            transformer.set_transpose('data', (2, 0, 1))  # move image channels to outermost dimension
            transformer.set_mean('data', np.array([104, 117, 123]))  # subtract the dataset-mean value in each channel
        else:
            pass # non RGB data need not use transformer

        self._transformer = transformer

        self._sample_shape = self._net.blobs['data'].data.shape
model.py 文件源码 项目:facade-segmentation 作者: jfemiani 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def net(weights=WEIGHTS):
    """
    Get the caffe net that has been trained to segment facade features.

    This initializes or re-initializes the global network with weights. There are certainly side-effects!

    The weights default to a caffe model that is part of the same sourcecode repository as this file.
    They can be changed by setting the I12_WEIGHTS environment variable, by passing a command line argument
    to some programs, or programatically (of course).

    :param weights: The weights to use for the net.
    :return:
    """
    global WEIGHTS
    global _net
    if _net is None or weights != WEIGHTS:
        if weights is not None:
            WEIGHTS = weights
        _net = caffe.Net(LAYERS, WEIGHTS, caffe.TEST)
    return _net
MtcnnDetector.py 文件源码 项目:MTCNN_face_detection_caffe 作者: LucyLu-LX 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self,
                 minsize = 20,
                 threshold = [0.6, 0.7, 0.7],
                 factor = 0.709,
                 fastresize = False,
                 gpuid = 0):

        self.minsize = minsize
        self.threshold = threshold
        self.factor = factor
        self.fastresize = fastresize

        model_P = './model/det1.prototxt'
        weights_P = './model/det1.caffemodel'
        model_R = './model/det2.prototxt'
        weights_R = './model/det2.caffemodel'
        model_O = './model/det3.prototxt'
        weights_O = './model/det3.caffemodel'

        caffe.set_mode_gpu()
        caffe.set_device(gpuid)

        self.PNet = caffe.Net(model_P, weights_P, caffe.TEST) 
        self.RNet = caffe.Net(model_R, weights_R, caffe.TEST)
        self.ONet = caffe.Net(model_O, weights_O, caffe.TEST)
tpn_train.py 文件源码 项目:TPN 作者: myfavouritekk 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def load_nets(args, cur_gpu):
    # initialize solver and feature net,
    # RNN should be initialized before CNN, because CNN cudnn conv layers
    # may assume using all available memory
    caffe.set_mode_gpu()
    caffe.set_device(cur_gpu)
    solver = caffe.SGDSolver(args.solver)
    if args.snapshot:
        print "Restoring history from {}".format(args.snapshot)
        solver.restore(args.snapshot)
    rnn = solver.net
    if args.weights:
        rnn.copy_from(args.weights)
    feature_net = caffe.Net(args.feature_net, args.feature_param, caffe.TEST)

    # apply bbox regression normalization on the net weights
    with open(args.bbox_mean, 'rb') as f:
        bbox_means = cPickle.load(f)
    with open(args.bbox_std, 'rb') as f:
        bbox_stds = cPickle.load(f)
    feature_net.params['bbox_pred_vid'][0].data[...] = \
        feature_net.params['bbox_pred_vid'][0].data * bbox_stds[:, np.newaxis]
    feature_net.params['bbox_pred_vid'][1].data[...] = \
        feature_net.params['bbox_pred_vid'][1].data * bbox_stds + bbox_means
    return solver, feature_net, rnn, bbox_means, bbox_stds
end2end_test_caffe.py 文件源码 项目:TPN 作者: myfavouritekk 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def load_models(args):

    # load rnn model
    caffe.set_mode_gpu()
    if args.gpus is None:
        caffe.set_device(args.job_id - 1)
    else:
        assert args.job_id <= len(args.gpus)
        caffe.set_device(args.gpus[args.job_id-1])
    if args.lstm_param is not '':
        rnn_net = caffe.Net(args.lstm_def, args.lstm_param, caffe.TEST)
        print 'Loaded RNN network from {:s}.'.format(args.lstm_def)
    else:
        rnn_net = caffe.Net(args.lstm_def, caffe.TEST)
        print 'WARNING: dummy RNN network created.'

    # load feature model
    feature_net = caffe.Net(args.def_file, args.param, caffe.TEST)
    print 'Loaded feature network from {:s}.'.format(args.def_file)

    return feature_net, rnn_net
CaffeUNet_2D.py 文件源码 项目:peters-stuff 作者: peterneher 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def add_batchnormscale(self, input, name):

        if True : # necessary?
            batch_norm_param={'moving_average_fraction': 0.95, 'use_global_stats': True }
            param = [dict(lr_mult=0),dict(lr_mult=0),dict(lr_mult=0)]
            l = L.BatchNorm(input, name=name+'_bn', batch_norm_param=batch_norm_param, param=param, include={'phase': caffe.TEST}, ntop=1)
            setattr(self.net_spec, name+'_bn', l)

            batch_norm_param={'moving_average_fraction': 0.95, 'use_global_stats': False }
            l = L.BatchNorm(input, name=name+'_bn', top=name+'_bn', batch_norm_param=batch_norm_param, param=param, include={'phase': caffe.TRAIN}, ntop=0)
            setattr(self.net_spec, name+'_bn' + '_train', l)

            l = L.Scale(getattr(self.net_spec, name+'_bn'), scale_param = { 'bias_term': True } )
            setattr(self.net_spec, name, l)
        else : # here without split in use_global_stats True/False
            l = L.Scale(L.BatchNorm(input), scale_param={'bias_term': True})
            setattr(self.net_spec, name, l)

        return l
CaffeUNet_3D.py 文件源码 项目:peters-stuff 作者: peterneher 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def add_batchnormscale(self, input, name):

        if True: # necessary?
            batch_norm_param = {'moving_average_fraction': 0.95, 'use_global_stats': True}
            param = [dict(lr_mult=0), dict(lr_mult=0), dict(lr_mult=0)]
            l = L.BatchNorm(input, name=name + '_bn', batch_norm_param=batch_norm_param, param=param, include={'phase': caffe.TEST}, ntop=1)
            setattr(self.net_spec, name + '_bn', l)

            batch_norm_param = {'moving_average_fraction': 0.95, 'use_global_stats': False}
            l = L.BatchNorm(input, name=name + '_bn', top=name + '_bn', batch_norm_param=batch_norm_param, param=param, include={'phase': caffe.TRAIN}, ntop=0)
            setattr(self.net_spec, name + '_bn' + '_train', l)

            l = L.Scale(getattr(self.net_spec, name + '_bn'), scale_param={'bias_term': True})
            setattr(self.net_spec, name, l)
        else: # here without split in use_global_stats True/False
            l = L.Scale(L.BatchNorm(input), scale_param={'bias_term': True})
            setattr(self.net_spec, name, l)

        return l
features.py 文件源码 项目:retrieval-2016-deepvision 作者: imatge-upc 项目源码 文件源码 阅读 54 收藏 0 点赞 0 评论 0
def __init__(self,params):

        self.dimension = params['dimension']
        self.dataset = params['dataset']
        self.pooling = params['pooling']
        # Read image lists
        with open(params['query_list'],'r') as f:
            self.query_names = f.read().splitlines()

        with open(params['frame_list'],'r') as f:
            self.database_list = f.read().splitlines()

        # Parameters needed
        self.layer = params['layer']
        self.save_db_feats = params['database_feats']

        # Init network
        if params['gpu']:
            caffe.set_mode_gpu()
            caffe.set_device(0)
        else:
            caffe.set_mode_cpu()
        print "Extracting from:", params['net_proto']
        cfg.TEST.HAS_RPN = True
        self.net = caffe.Net(params['net_proto'], params['net'], caffe.TEST)
prune.py 文件源码 项目:Caffe-Python-Tutorial 作者: tostq 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def eval_prune_threshold(threshold_list, test_prototxt, caffemodel, prune_layers):
    def net_prune(threshold, test_prototx, caffemodel, prune_layers):
        test_net = caffe.Net(test_prototx, caffemodel, caffe.TEST)
        return prune(threshold, test_net, prune_layers)

    accuracy = []
    for threshold in threshold_list:
        results = net_prune(threshold, test_prototxt, caffemodel, prune_layers)
        print 'threshold: ', results[0]
        print '\ntotal_percentage: ', results[1]
        print '\npercentage_list: ', results[2]
        print '\ntest_loss: ', results[3]
        print '\naccuracy: ', results[4]
        accuracy.append(results[4])
    plt.plot(accuracy,'r.')
    plt.show()

# ?????????
A_feature_extraction.py 文件源码 项目:blcf 作者: willard-yuan 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, model_file, pretrained_file, mean_value=None,
        layer=['pool5'], input_size = None ):

        caffe.set_mode_gpu()
        caffe.Net.__init__(self, model_file, pretrained_file, caffe.TEST)

        # get name input layer
        self.list_layers = layer
        self.mean_value = mean_value

        # set transformer object
        self.transformer = caffe.io.Transformer({'data': self.blobs['data'].data.shape})
        self.transformer.set_transpose( 'data', (2,0,1) )

        if mean_value is not None:
            self.transformer.set_mean('data', mean_value)

        self.transformer.set_raw_scale('data', 255)
        self.transformer.set_channel_swap('data', (2,1,0))


        if input_size is not None:
            #reshape the input
            print "New input! {}".format(input_size)
            self.reshape_input( input_size[0], input_size[1],  input_size[2], input_size[3]  )
helper.py 文件源码 项目:UVA 作者: chiachun 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def set_caffe(cfg):
    model = cfg.VGG_model
    weights = cfg.VGG_weights
    if cfg.cpu_caffe:
        caffe.set_mode_cpu()
    net = caffe.Net(model, weights, caffe.TEST)

    # Set up transformer
    transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
    transformer.set_transpose('data', (2,0,1))
    transformer.set_mean('data',np.array([129.1863,104.7624,93.5940]))

    # BGR -> RGB
    transformer.set_channel_swap('data', (2,1,0))
    transformer.set_raw_scale('data',255)
    return net, transformer
convert_caffe_weights_to_npy.py 文件源码 项目:flownet2-tf 作者: sampepose 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def main():
    # Create tempfile to hold prototxt
    tmp = tempfile.NamedTemporaryFile(mode='w', delete=True)

    # Parse prototxt and inject `vars`
    proto = open(arch['DEPLOY_PROTOTXT']).readlines()
    for line in proto:
        for key, value in vars.items():
            tag = "$%s$" % key
            line = line.replace(tag, str(value))
        tmp.write(line)
    tmp.flush()

    # Instantiate Caffe Model
    net = caffe.Net(tmp.name, arch['CAFFEMODEL'], caffe.TEST)

    out = {}
    for (caffe_param, tf_param) in arch['PARAMS'].items():
        # Caffe stores weights as (channels_out, channels_in, h, w)
        # but TF expects (h, w, channels_in, channels_out)
        out[tf_param + '/weights'] = net.params[caffe_param][0].data.transpose((2, 3, 1, 0))
        out[tf_param + '/biases'] = net.params[caffe_param][1].data

    np.save(FLAGS.out, out)
convert.py 文件源码 项目:TF-Examples 作者: CharlesShang 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def load_caffe(img_p, layers=50):
    caffe.set_mode_cpu()

    prototxt = "data/ResNet-%d-deploy.prototxt" % layers
    caffemodel = "data/ResNet-%d-model.caffemodel" % layers
    # net = caffe.Net(prototxt, caffe.TEST)
    net = caffe.Net(prototxt, caffemodel, caffe.TEST)

    net.blobs['data'].data[0] = img_p.transpose((2, 0, 1))
    assert net.blobs['data'].data[0].shape == (3, 224, 224)
    net.forward()

    caffe_prob = net.blobs['prob'].data[0]
    print_prob(caffe_prob)

    return net


# returns the top1 string
layer_helpers.py 文件源码 项目:deep_share 作者: luyongxi 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def add_multilabel_data_layer(net, name, phase, num_classes, class_list=None):
    """ Add a MultiLabelData layer """
    include_dict = {'phase': phase}
    param = {'num_classes': num_classes}
    if phase == caffe.TRAIN:
        param['stage'] = 'TRAIN'
    elif phase == caffe.TEST:
        param['stage'] = 'VAL'
    if class_list is not None:
        assert len(class_list) == num_classes, \
            'Length of class list does not match number of classes {} vs {}'.\
            format(len(class_list), num_classes)
        param['class_list'] = class_list

    param_str = yaml.dump(param)
    net[name[0]], net[name[1]] = L.Python(name=name[0], python_param=dict(module='layers.multilabel_data', 
        layer='MultiLabelData', param_str=param_str), include=include_dict, ntop=2)
layer_helpers.py 文件源码 项目:deep_share 作者: luyongxi 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def add_singlelabel_data_layer(net, name, phase, num_classes, class_list=None):
    """ Add a MultiLabelData layer """
    include_dict = {'phase': phase}
    param = {'num_classes': num_classes}
    if phase == caffe.TRAIN:
        param['stage'] = 'TRAIN'
    elif phase == caffe.TEST:
        param['stage'] = 'VAL'
    if class_list is not None:
        assert len(class_list) == num_classes, \
            'Length of class list does not match number of classes {} vs {}'.\
            format(len(class_list), num_classes)
        param['class_list'] = class_list

    param_str = yaml.dump(param)
    net[name[0]], net[name[1]] = L.Python(name=name[0], python_param=dict(module='layers.singlelabel_data', 
        layer='SingleLabelData', param_str=param_str), include=include_dict, ntop=2)
trainCaffe.py 文件源码 项目:infantSeg 作者: ginobilinie 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def printNetwork_weights(prototxt_filename, caffemodel_filename):
    '''
    For each CNN layer, print weight heatmap and weight histogram 
    '''
    net = caffe.Net(prototxt_filename,caffemodel_filename, caffe.TEST)
    for layerName in net.params: 
        # display the weights
        arr = net.params[layerName][0].data
        plt.clf()
        fig = plt.figure(figsize=(10,10))
        ax = fig.add_subplot(111)
        cax = ax.matshow(arr, interpolation='none')
        fig.colorbar(cax, orientation="horizontal")
        plt.savefig('{0}_weights_{1}.png'.format(caffemodel_filename, layerName), dpi=100, format='png', bbox_inches='tight') # use format='svg' or 'pdf' for vectorial pictures
        plt.close()

        # weights histogram  
        plt.clf()
        plt.hist(arr.tolist(), bins=20)
        plt.savefig('{0}_weights_hist_{1}.png'.format(caffemodel_filename, layerName), dpi=100, format='png', bbox_inches='tight') # use format='svg' or 'pdf' for vectorial pictures
        plt.close()
fusion-classify.py 文件源码 项目:toothless 作者: ratt-ru 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def get_net(caffemodel, deploy_file, use_gpu=True):
    """
    Returns an instance of caffe.Net

    Arguments:
    caffemodel -- path to a .caffemodel file
    deploy_file -- path to a .prototxt file

    Keyword arguments:
    use_gpu -- if True, use the GPU for inference
    """
    #if use_gpu:
    #    caffe.set_mode_gpu()
    caffe.set_mode_cpu()

    # load a new model
    return caffe.Net(deploy_file, caffemodel, caffe.TEST)

# Transformer function to perform image transformation
example.py 文件源码 项目:GTSRB-caffe-model 作者: magnusja 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def get_net(caffemodel, deploy_file, use_gpu=True):
    """
    Returns an instance of caffe.Net

    Arguments:
    caffemodel -- path to a .caffemodel file
    deploy_file -- path to a .prototxt file

    Keyword arguments:
    use_gpu -- if True, use the GPU for inference
    """
    if use_gpu:
        caffe.set_mode_gpu()

    # load a new model
    return caffe.Net(deploy_file, caffemodel, caffe.TEST)
caffe_utils.py 文件源码 项目:CNN_Visualization 作者: albioTQ 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, model_path,
                 weights_path,
                 mean_path=None,
                 image_scale=255.0,
                 batch_size=1,
                 input_shape=(227, 227)):

        self.net = caffe.Net(model_path,      # defines the structure of the model
                        weights_path,  # contains the trained weights
                        caffe.TEST)     # use test mode (e.g., don't perform dropout)

        self.net.blobs['data'].reshape(batch_size, 3, input_shape[0], input_shape[1])
        self.net.blobs['prob'].reshape(batch_size, )

        self.mean_path = mean_path
        self.image_scale = image_scale
        self.batch_size = batch_size

        self.transformer = self.set_transformer()
mtcnn_aligner.py 文件源码 项目:prepare-faces-zyf 作者: walkoncross 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_aligner(caffe_model_path, use_more_stage=False):
    caffe.set_mode_gpu()
#    PNet = caffe.Net(caffe_model_path + "/det1.prototxt",
#                     caffe_model_path + "/det1.caffemodel", caffe.TEST)
    if use_more_stage:
        RNet = caffe.Net(caffe_model_path + "/det2.prototxt",
                         caffe_model_path + "/det2.caffemodel", caffe.TEST)
    else:
        RNet = None

    ONet = caffe.Net(caffe_model_path + "/det3.prototxt",
                     caffe_model_path + "/det3.caffemodel", caffe.TEST)

    LNet = caffe.Net(caffe_model_path + "/det4.prototxt",
                     caffe_model_path + "/det4.caffemodel", caffe.TEST)

#    return (PNet, RNet, ONet)
    return (RNet, ONet, LNet)
#    return (RNet, ONet, None)
mtcnn_aligner.py 文件源码 项目:prepare-faces-zyf 作者: walkoncross 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def get_aligner(caffe_model_path, use_more_stage=False):
    caffe.set_mode_gpu()
#    PNet = caffe.Net(caffe_model_path + "/det1.prototxt",
#                     caffe_model_path + "/det1.caffemodel", caffe.TEST)
    if use_more_stage:
        RNet = caffe.Net(caffe_model_path + "/det2.prototxt",
                         caffe_model_path + "/det2.caffemodel", caffe.TEST)
    else:
        RNet = None

    ONet = caffe.Net(caffe_model_path + "/det3.prototxt",
                     caffe_model_path + "/det3.caffemodel", caffe.TEST)

    LNet = caffe.Net(caffe_model_path + "/det4.prototxt",
                     caffe_model_path + "/det4.caffemodel", caffe.TEST)

#    return (PNet, RNet, ONet)
    return (RNet, ONet, LNet)
#    return (RNet, ONet, None)
worker.py 文件源码 项目:Cuppa 作者: flipkart-incubator 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __load_caffe_model(self, blob_path, prototxt_path):
        """
        Load caffe model to memory
        Args:
            blob_path: Model in HDF5 format
            prototxt_path: Prototxt file. Contains Network implementation

        Returns:

        """
        net = caffe.Net(prototxt_path, blob_path, caffe.TEST)
        input_layer = net.inputs[0]
        output_layer = net.outputs[0]
        #height = net.blobs["data_q"].data.shape[2]
        #width = net.blobs["data_q"].data.shape[3]
        height = net.blobs[input_layer].data.shape[2]
        width = net.blobs[input_layer].data.shape[3]
        self.logger.info("Model has been successfully loaded from Blob:" + blob_path + " , Prototxt:" + prototxt_path)
        return net, height, width
classifier.py 文件源码 项目:Barebones-Flask-and-Caffe-Classifier 作者: alex-paterson 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_net(caffemodel, deploy_file, use_gpu=True):
    """
    Returns an instance of caffe.Net

    Arguments:
    caffemodel -- path to a .caffemodel file
    deploy_file -- path to a .prototxt file

    Keyword arguments:
    use_gpu -- if True, use the GPU for inference
    """
    if use_gpu:
        caffe.set_mode_gpu()

    # load a new model
    return caffe.Net(deploy_file, caffemodel, caffe.TEST)
infer.py 文件源码 项目:ifp 作者: morris-frank 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def main(argv):
    sport = 'long_jump'
    model = 'snap_iter_50000.caffemodel'
    #---
    weights = model_root + 'fcn/' + sport + '/' + model
    netf = './fcn/' + sport + '/deploy.prototxt'

    gpu = 0
    caffe.set_device(gpu)
    caffe.set_mode_gpu()

    net = caffe.Net(netf, weights, caffe.TEST)
    im_head = '/export/home/mfrank/data/OlympicSports/clips/'
    im_head = '/export/home/mfrank/data/OlympicSports/patches/'
    test_path_file = 'fcn/' + sport + '/test.txt'
    train_path_file = 'fcn/' + sport + '/train.txt'

    inferfile(net, train_path_file, im_head)
    ifp_morris.apply_overlayfcn(train_path_file, factor=4)

    inferfile(net, test_path_file, im_head)
    ifp_morris.apply_overlayfcn(test_path_file, factor=4)
caffeNetViewer.py 文件源码 项目:caffeNetViewer 作者: birolkuyumcu 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def loadLayers(self):
        mname = str(self.ui.comboBoxModel.currentText())
        wname = str(self.ui.comboBoxWeights.currentText())
        self.net = caffe.Net(mname,wname , caffe.TEST)
        out = self.net.blobs
        self.layerList = out.keys()
        self.ui.comboBoxLayers.clear()
        for ln in self.layerList :
            self.ui.comboBoxLayers.addItem(ln)

        self.ui.plainTextEdit.clear()
        self.ui.plainTextEdit.appendPlainText('Caffe Model Loaded...')
        self.ui.plainTextEdit.appendPlainText('  Model Name : '+mname)
        self.ui.plainTextEdit.appendPlainText('  Weights Name : '+wname)

        self.ui.plainTextEdit.appendPlainText("Network Layers ...")

        for name, layer in zip(self.net._layer_names, self.net.layers):
            if not name in self.layerList :
                continue
            msg = "   "+name +" --> "+str(layer.type) +" --> "+ str((self.net.blobs[name].data[0]).shape)
            self.ui.plainTextEdit.appendPlainText(msg)      

        self.isModelLoaded = True
init.py 文件源码 项目:jenova 作者: dungba88 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def run(self, _, app_context):
        """run the action"""
        import caffe

        # init CPU/GPU mode
        cpu_mode = app_context.get_config('caffe.cpu_mode')
        if cpu_mode:
            caffe.set_mode_cpu()
        else:
            caffe.set_mode_gpu()
            caffe.set_device(0)

        # load test model
        test_model_file = "models/" + app_context.get_config('caffe.test_model')
        trained_data_file = "cache/data/" + app_context.get_config('caffe.trained_data')
        test_net = caffe.Net(test_model_file, trained_data_file, caffe.TEST)
        app_context.params['test_net'] = test_net

        logging.getLogger(__name__).info('Loaded neural network: ' + trained_data_file)
caffe2numpy.py 文件源码 项目:mcv-m5 作者: david-vazquez 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def load_caffe(path_prototxt='weights/resnetFCN.prototxt',
               path_weights='weights/resnetFCN.caffemodel',
               out_path='weights/resnetFCN.npy',
               version='V1'):

    # Load the caffe network
    print (' --> Loading the caffe weights...')
    net_caffe = caffe.Net(path_prototxt, path_weights, caffe.TEST)
    layers_caffe = dict(zip(list(net_caffe._layer_names), net_caffe.layers))

    # Convert weights
    print (' --> Converting the caffe weights to numpy...')
    weights_caffe = convert_weights(layers_caffe, v=version)

    # Save weights
    print (' --> Saving the weights in numpy...')
    np.save(out_path, weights_caffe)


# Entry point of the script


问题


面经


文章

微信
公众号

扫码关注公众号