python类SolverParameter()的实例源码

train.py 文件源码 项目:tripletloss 作者: luhaofang 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        caffe.set_mode_gpu()
        caffe.set_device(0)
        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)
train.py 文件源码 项目:dpl 作者: ppengtang 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)
        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
train.py 文件源码 项目:fast-rcnn-distillation 作者: xiaolonw 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        print 'Computing bounding-box regression targets...'
        self.bbox_means, self.bbox_stds = \
                rdl_roidb.add_bbox_regression_targets(roidb)
        print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
train.py 文件源码 项目:image-classifier 作者: gustavkkk 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, solver, output_dir, pretrained_model=None, gpu_id=0, data=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        caffe.set_mode_gpu()
        caffe.set_device(gpu_id)
        self.solver = caffe.SGDSolver(solver)
        if pretrained_model is not None:
            print(('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model))
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_data(data)
train.py 文件源码 项目:dilation 作者: fyu 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def make_solver(options):
    solver = caffe_pb2.SolverParameter()

    solver.train_net = options.train_net
    if options.test_net is not None:
        solver.test_net.append(options.test_net)
        solver.test_iter.append(50)
    solver.test_interval = 100
    solver.base_lr = options.lr
    solver.lr_policy = "step"
    solver.gamma = 0.1
    solver.stepsize = 100000
    solver.display = 5
    solver.max_iter = 400000
    solver.momentum = options.momentum
    solver.weight_decay = 0.0005
    solver.regularization_type = 'L2'
    solver.snapshot = 2000
    solver.solver_mode = solver.GPU
    solver.iter_size = options.iter_size
    solver.snapshot_format = solver.BINARYPROTO
    solver.type = 'SGD'
    solver.snapshot_prefix = options.snapshot_prefix

    return solver
train.py 文件源码 项目:RON 作者: taokong 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        self.solver = caffe.SGDSolver(solver_prototxt)

        if model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(model)
            self.solver.net.copy_from(model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
train_mfh_baseline.py 文件源码 项目:vqa-mfb 作者: yuzcccc 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_solver(folder):
    s = caffe_pb2.SolverParameter()
    s.train_net = './%s/proto_train.prototxt'%folder
    s.snapshot = 10000
    s.snapshot_prefix = './%s/'%folder
    s.max_iter = int(config.MAX_ITERATIONS)
    s.display = int(config.VALIDATE_INTERVAL)
    s.type = 'Adam'
    s.stepsize = int(config.MAX_ITERATIONS*0.2)
    s.gamma = 0.5
    s.lr_policy = "step"
    s.base_lr = 0.0007
    s.momentum = 0.9
    s.momentum2 = 0.999
    s.weight_decay = 0.000
    s.clip_gradients = 10
    return s
train_mfb_coatt_glove.py 文件源码 项目:vqa-mfb 作者: yuzcccc 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def get_solver(folder):
    s = caffe_pb2.SolverParameter()
    s.train_net = './%s/proto_train.prototxt'%folder
    s.snapshot = int(config.VALIDATE_INTERVAL)
    s.snapshot_prefix = './%s/'%folder
    s.max_iter = int(config.MAX_ITERATIONS)
    s.display = int(config.VALIDATE_INTERVAL)
    s.type = 'Adam'
    s.stepsize = int(config.MAX_ITERATIONS*0.4)
    s.gamma = 0.5
    s.lr_policy = "step"
    s.base_lr = 0.0007
    s.momentum = 0.9
    s.momentum2 = 0.999
    s.weight_decay = 0.000
    s.clip_gradients = 10
    return s
train_mfh_coatt_glove.py 文件源码 项目:vqa-mfb 作者: yuzcccc 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def get_solver(folder):
    s = caffe_pb2.SolverParameter()
    s.train_net = './%s/proto_train.prototxt'%folder
    s.snapshot = 10000
    s.snapshot_prefix = './%s/'%folder
    s.max_iter = int(config.MAX_ITERATIONS)
    s.display = int(config.VALIDATE_INTERVAL)
    s.type = 'Adam'
    s.stepsize = int(config.MAX_ITERATIONS*0.4)
    s.gamma = 0.25
    s.lr_policy = "step"
    s.base_lr = 0.0007
    s.momentum = 0.9
    s.momentum2 = 0.999
    s.weight_decay = 0.000
    s.clip_gradients = 10
    return s
train_mfb_baseline.py 文件源码 项目:vqa-mfb 作者: yuzcccc 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def get_solver(folder):
    s = caffe_pb2.SolverParameter()
    s.train_net = './%s/proto_train.prototxt'%folder
    s.snapshot = int(config.VALIDATE_INTERVAL)
    s.snapshot_prefix = './%s/'%folder
    s.max_iter = int(config.MAX_ITERATIONS)
    s.display = int(config.VALIDATE_INTERVAL)
    s.type = 'Adam'
    s.stepsize = int(config.MAX_ITERATIONS*0.4)
    s.gamma = 0.5
    s.lr_policy = "step"
    s.base_lr = 0.0007
    s.momentum = 0.9
    s.momentum2 = 0.999
    s.weight_decay = 0.000
    s.clip_gradients = 10
    return s
train.py 文件源码 项目:CRAFT 作者: byangderek 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        print 'Computing bounding-box regression targets...'
        self.bbox_means, self.bbox_stds = \
                rdl_roidb.add_bbox_regression_targets(roidb)
        print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
train.py 文件源码 项目:CRAFT 作者: byangderek 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        print 'Computing bounding-box regression targets...'
        self.bbox_means, self.bbox_stds = \
                rdl_roidb.add_bbox_regression_targets(roidb)
        print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
train.py 文件源码 项目:CRAFT 作者: byangderek 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        print 'Computing bounding-box regression targets...'
        self.bbox_means, self.bbox_stds = \
                rdl_roidb.add_bbox_regression_targets(roidb)
        print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
train.py 文件源码 项目:triplet 作者: hizhangp 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, solver, output_dir, pretrained_model=None, gpu_id=0, data=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        caffe.set_mode_gpu()
        caffe.set_device(gpu_id)
        self.solver = caffe.SGDSolver(solver)
        if pretrained_model is not None:
            print(('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model))
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_data(data)
caffe_solver.py 文件源码 项目:Triplet_Loss_SBIR 作者: TuBui 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, solver_path = '', debug=False):
    """
    Initialise solver params
    If a file is given, SolverConfig is initialised with params from that file
    """
    self.sp = caffe_pb2.SolverParameter()
    #critical:
    self.sp.base_lr = 0.01
    self.sp.momentum = 0.9

    if solver_path:
      self.read(solver_path)

    if debug:
      self.sp.max_iter = 12
      self.sp.display = 1

    self.sp.type = 'SGD'
train.py 文件源码 项目:SubCNN 作者: tanshen 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir, pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        print 'Computing bounding-box regression targets...'
        if cfg.TRAIN.BBOX_REG:
            if cfg.IS_RPN:
                self.bbox_means, self.bbox_stds = gdl_roidb.add_bbox_regression_targets(roidb)
            else:
                self.bbox_means, self.bbox_stds = rdl_roidb.add_bbox_regression_targets(roidb)
        print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
model_training_utils.py 文件源码 项目:shuffle-tuple 作者: imisra 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def parse_solver(self):
        solverPath = self.solverPath;
        self.expName = os.path.split(solverPath)[-1].split('_')[0];
        self.expDir = os.path.split(solverPath)[0];
        self.solver_param = caffe_pb2.SolverParameter();
        with open(self.solverPath, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        allLines = [x.strip() for x in open(solverPath,'r')];

        snapPath = self.solver_param.snapshot_prefix;
        snapExp = os.path.split(snapPath)[-1];
        snapPath = os.path.split(snapPath)[0];
        sg_utils.mkdir(snapPath);
        assert( os.path.isdir(snapPath) ), '%s does not exist'%(snapPath);
        self.snapPath = snapPath;
        assert( self.snapPath == os.path.split(self.solver_param.snapshot_prefix)[0] );
train.py 文件源码 项目:WPAL-network 作者: kyu-sz 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, db, output_dir, do_flip,
                 snapshot_path=None):
        """Initialize the SolverWrapper."""
        self._output_dir = output_dir
        self._solver = caffe.SGDSolver(solver_prototxt)

        self._solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self._solver_param)

        infix = ('_' + cfg.TRAIN.SNAPSHOT_INFIX
                 if cfg.TRAIN.SNAPSHOT_INFIX != '' else '')
        self._snapshot_prefix = self._solver_param.snapshot_prefix + infix + '_iter_'

        if snapshot_path is not None:
            print ('Loading snapshot weights from {:s}').format(snapshot_path)
            self._solver.net.copy_from(snapshot_path)

            snapshot_path = snapshot_path.split('/')[-1]
            if snapshot_path.startswith(self._snapshot_prefix):
                print 'Warning! Existing snapshots may be overriden by new snapshots!'

        self._db = db
        self._solver.net.layers[0].set_db(self._db, do_flip)
make_densenet.py 文件源码 项目:caffe-model-gallery 作者: Xiangyu-CAS 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def make_solver():
    s = caffe_pb2.SolverParameter()
    s.random_seed = 0xCAFFE

    s.train_net = 'train_densenet.prototxt'
    s.test_net.append('test_densenet.prototxt')
    s.test_interval = 800
    s.test_iter.append(200)

    s.max_iter = 230000
    s.type = 'Nesterov'
    s.display = 1

    s.base_lr = 0.1
    s.momentum = 0.9
    s.weight_decay = 1e-4

    s.lr_policy='multistep'
    s.gamma = 0.1
    s.stepvalue.append(int(0.5 * s.max_iter))
    s.stepvalue.append(int(0.75 * s.max_iter))
    s.solver_mode = caffe_pb2.SolverParameter.GPU

    solver_path = 'solver.prototxt'
    with open(solver_path, 'w') as f:
        f.write(str(s))
train.py 文件源码 项目:adversarial-frcnn 作者: xiaolonw 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and
            cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
            # RPN can only use precomputed normalization because there are no
            # fixed statistics to compute a priori
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED

        if cfg.TRAIN.BBOX_REG:
            print 'Computing bounding-box regression targets...'
            self.bbox_means, self.bbox_stds = \
                    rdl_roidb.add_bbox_regression_targets(roidb)
            print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
train.py 文件源码 项目:faster-rcnn-resnet 作者: Eniac-Xie 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and
            cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
            # RPN can only use precomputed normalization because there are no
            # fixed statistics to compute a priori
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED

        if cfg.TRAIN.BBOX_REG:
            print 'Computing bounding-box regression targets...'
            self.bbox_means, self.bbox_stds = \
                    rdl_roidb.add_bbox_regression_targets(roidb)
            print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
train.py 文件源码 项目:CoupleNet 作者: tshizys 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and
            cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
            # RPN can only use precomputed normalization because there are no
            # fixed statistics to compute a priori
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED

        if cfg.TRAIN.BBOX_REG:
            print 'Computing bounding-box regression targets...'
            self.bbox_means, self.bbox_stds = \
                    rdl_roidb.add_bbox_regression_targets(roidb)
            print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
train.py 文件源码 项目:py-faster-rcnn-tk1 作者: joeking11829 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and
            cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
            # RPN can only use precomputed normalization because there are no
            # fixed statistics to compute a priori
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED

        if cfg.TRAIN.BBOX_REG:
            print 'Computing bounding-box regression targets...'
            self.bbox_means, self.bbox_stds = \
                    rdl_roidb.add_bbox_regression_targets(roidb)
            print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
train.py 文件源码 项目:py-faster-rcnn-resnet-imagenet 作者: tianzhi0549 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir, 
            nccl_uid, rank, bbox_means=None, bbox_stds=None, 
            pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir
        self.rank = rank
        if cfg.TRAIN.BBOX_REG:
            self.bbox_means, self.bbox_stds = bbox_means, bbox_stds
        if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and
            cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
            # RPN can only use precomputed normalization because there are no
            # fixed statistics to compute a priori
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED

        self.solver = caffe.SGDSolver(solver_prototxt)

        assert caffe.solver_count() * cfg.TRAIN.IMS_PER_BATCH * self.solver.param.iter_size == \
            cfg.TRAIN.REAL_BATCH_SIZE, "{} vs {}". \
            format(caffe.solver_count() * cfg.TRAIN.IMS_PER_BATCH * self.solver.param.iter_size, cfg.TRAIN.REAL_BATCH_SIZE)

        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        nccl = caffe.NCCL(self.solver, nccl_uid)
        nccl.bcast()
        self.solver.add_callback(nccl)
        assert self.solver.param.layer_wise_reduce
        if self.solver.param.layer_wise_reduce:
            self.solver.net.after_backward(nccl)
        self.nccl = nccl # hold the reference to nccl

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
proto_file.py 文件源码 项目:Sensor-Specific-Hyperspectral-Image-Feature-Learning 作者: MeiShaohui 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def train_solver(conf):
    s = caffe_pb2.SolverParameter()

    # Set a seed for reproducible experiments:
    # this controls for randomization in training.
    #s.random_seed = 0xCAFFE

    # Specify locations of the train and (maybe) test networks.
    s.train_net = conf.train_net_file
    s.test_net.append(conf.test_net_file)
    s.test_interval = 10000  # Test after every 500 training iterations.
    s.test_iter.append(1)  # Test on 100 batches each time we test.
    s.max_iter = conf.max_iter  # no. of times to update the net (training iterations)
    # s.max_iter = 50000  # no. of times to update the net (training iterations)
    s.type = "AdaGrad"
    s.gamma = 0.1
    s.base_lr = 0.01
    s.weight_decay = 5e-4
    s.lr_policy = 'multistep'
    s.display = 10000
    s.snapshot = 10000
    s.snapshot_prefix = conf.snapshot_prefix
    #s.stepvalue.append(1000000)
    #s.stepvalue.append(300000)
    s.solver_mode = caffe_pb2.SolverParameter.GPU
    s.device_id = 1 # will use the second GPU card
    s.snapshot_format = 0 # 0 is HDF5, 1 is binary
    return s
solver_builder.py 文件源码 项目:material-seg 作者: paulu 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def build_solver(solver_filename, **kwargs):
    solver = caffe_pb2.SolverParameter()
    for k, v in kwargs.iteritems():
        setattr(solver, v)
    with open(solver_filename, 'w') as f:
        f.write(text_format.MessageToString(solver))
train.py 文件源码 项目:face-py-faster-rcnn 作者: playerkk 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and
            cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
            # RPN can only use precomputed normalization because there are no
            # fixed statistics to compute a priori
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED

        if cfg.TRAIN.BBOX_REG:
            print 'Computing bounding-box regression targets...'
            self.bbox_means, self.bbox_stds = \
                    rdl_roidb.add_bbox_regression_targets(roidb)
            print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
score_model.py 文件源码 项目:score-zeroshot 作者: pedro-morgado 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def generate_solver_proto(solver_fn, model_fn, trainOpts):
        from caffe.proto import caffe_pb2
        solver = caffe_pb2.SolverParameter()
        solver.net = model_fn

        if trainOpts.num_lr_decays > 0:
            solver.lr_policy = 'step'
            solver.gamma = trainOpts.lr_decay_factor
            solver.stepsize = int(trainOpts.iters/(trainOpts.num_lr_decays+1))
        else:
            solver.lr_policy = 'fixed'
        solver.base_lr = trainOpts.init_lr
        solver.max_iter = trainOpts.iters
        solver.display = 20
        solver.momentum = 0.9
        solver.weight_decay = trainOpts.paramReg

        solver.test_state.add()
        solver.test_state.add()
        solver.test_state[0].stage.append('TestRecognition')
        solver.test_state[1].stage.append('TestZeroShot')
        solver.test_iter.extend([20, 20])
        solver.test_interval = 100

        solver.snapshot = 5000
        solver.snapshot_prefix = os.path.splitext(model_fn)[0]

        with open(solver_fn, 'w') as f:
            f.write(str(solver))
train.py 文件源码 项目:deep-fashion 作者: zuowang 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and
            cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
            # RPN can only use precomputed normalization because there are no
            # fixed statistics to compute a priori
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED

        if cfg.TRAIN.BBOX_REG:
            print 'Computing bounding-box regression targets...'
            self.bbox_means, self.bbox_stds = \
                    rdl_roidb.add_bbox_regression_targets(roidb)
            print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)
train.py 文件源码 项目:RPN 作者: hfut721 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, solver_prototxt, roidb, output_dir,
                 pretrained_model=None):
        """Initialize the SolverWrapper."""
        self.output_dir = output_dir

        if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and
            cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
            # RPN can only use precomputed normalization because there are no
            # fixed statistics to compute a priori
            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED

        if cfg.TRAIN.BBOX_REG:
            print 'Computing bounding-box regression targets...'
            self.bbox_means, self.bbox_stds = \
                    rdl_roidb.add_bbox_regression_targets(roidb)
            print 'done'

        self.solver = caffe.SGDSolver(solver_prototxt)
        if pretrained_model is not None:
            print ('Loading pretrained model '
                   'weights from {:s}').format(pretrained_model)
            self.solver.net.copy_from(pretrained_model)

        self.solver_param = caffe_pb2.SolverParameter()
        with open(solver_prototxt, 'rt') as f:
            pb2.text_format.Merge(f.read(), self.solver_param)

        self.solver.net.layers[0].set_roidb(roidb)


问题


面经


文章

微信
公众号

扫码关注公众号