def profile(num_elements=100000, parser="lxml"):
filehandle = tempfile.NamedTemporaryFile()
filename = filehandle.name
data = rdoc(num_elements)
vars = dict(bs4=bs4, data=data, parser=parser)
cProfile.runctx('bs4.BeautifulSoup(data, parser)' , vars, vars, filename)
stats = pstats.Stats(filename)
# stats.strip_dirs()
stats.sort_stats("cumulative")
stats.print_stats('_html5lib|bs4', 50)
python类runctx()的实例源码
def _profile(fn, *args, **kw):
filename = "%s.prof" % fn.__name__
def load_stats():
st = pstats.Stats(filename)
os.unlink(filename)
return st
began = time.time()
cProfile.runctx('result = fn(*args, **kw)', globals(), locals(),
filename=filename)
ended = time.time()
return ended - began, load_stats, locals()['result']
def profile(num_elements=100000, parser="lxml"):
filehandle = tempfile.NamedTemporaryFile()
filename = filehandle.name
data = rdoc(num_elements)
vars = dict(bs4=bs4, data=data, parser=parser)
cProfile.runctx('bs4.BeautifulSoup(data, parser)' , vars, vars, filename)
stats = pstats.Stats(filename)
# stats.strip_dirs()
stats.sort_stats("cumulative")
stats.print_stats('_html5lib|bs4', 50)
def profile(num_elements=100000, parser="lxml"):
filehandle = tempfile.NamedTemporaryFile()
filename = filehandle.name
data = rdoc(num_elements)
vars = dict(bs4=bs4, data=data, parser=parser)
cProfile.runctx('bs4.BeautifulSoup(data, parser)' , vars, vars, filename)
stats = pstats.Stats(filename)
# stats.strip_dirs()
stats.sort_stats("cumulative")
stats.print_stats('_html5lib|bs4', 50)
def profile(num_elements=100000, parser="lxml"):
filehandle = tempfile.NamedTemporaryFile()
filename = filehandle.name
data = rdoc(num_elements)
vars = dict(bs4=bs4, data=data, parser=parser)
cProfile.runctx('bs4.BeautifulSoup(data, parser)' , vars, vars, filename)
stats = pstats.Stats(filename)
# stats.strip_dirs()
stats.sort_stats("cumulative")
stats.print_stats('_html5lib|bs4', 50)
def adagrad():
theta = ones((features.num_features)) * -.1
theta[0] = 1.0
master_stepsize = 1e-1 #for example
fudge_factor = 1e-6 #for numerical stability
historical_grad = 0
for iteration in xrange(10):
print "iteration", iteration
for i, (x, y) in enumerate(train):
print i
theta_g = zeros_like(theta)
t.grad_features(x, y, i, theta, theta_g, features, threshold)
historical_grad += theta_g * theta_g
adjusted_grad = theta_g / (fudge_factor + np.sqrt(historical_grad))
theta -= master_stepsize * adjusted_grad
print f(theta)
return theta
#cProfile.runctx("adagrad()", globals(), locals(), '.prof')
#s = pstats.Stats('.prof')
#s.strip_dirs().sort_stats('time').print_stats(30)
def profile(num_elements=100000, parser="lxml"):
filehandle = tempfile.NamedTemporaryFile()
filename = filehandle.name
data = rdoc(num_elements)
vars = dict(bs4=bs4, data=data, parser=parser)
cProfile.runctx('bs4.BeautifulSoup(data, parser)' , vars, vars, filename)
stats = pstats.Stats(filename)
# stats.strip_dirs()
stats.sort_stats("cumulative")
stats.print_stats('_html5lib|bs4', 50)
def _profile(filename, fn, *args, **kw):
gc.collect()
profiler.runctx('result = fn(*args, **kw)', globals(), locals(),
filename=filename)
return locals()['result']
def _live_profile(fn, *args, **kw):
load_stats = lambda: pstats.Stats()
gc.collect()
began = time.time()
profiler.runctx('result = fn(*args, **kw)', globals(), locals())
ended = time.time()
return ended - began, load_stats, locals()['result']
def profile(num_elements=100000, parser="lxml"):
filehandle = tempfile.NamedTemporaryFile()
filename = filehandle.name
data = rdoc(num_elements)
vars = dict(bs4=bs4, data=data, parser=parser)
cProfile.runctx('bs4.BeautifulSoup(data, parser)' , vars, vars, filename)
stats = pstats.Stats(filename)
# stats.strip_dirs()
stats.sort_stats("cumulative")
stats.print_stats('_html5lib|bs4', 50)
def profile(num_elements=100000, parser="lxml"):
filehandle = tempfile.NamedTemporaryFile()
filename = filehandle.name
data = rdoc(num_elements)
vars = dict(bs4=bs4, data=data, parser=parser)
cProfile.runctx('bs4.BeautifulSoup(data, parser)' , vars, vars, filename)
stats = pstats.Stats(filename)
# stats.strip_dirs()
stats.sort_stats("cumulative")
stats.print_stats('_html5lib|bs4', 50)
def profile(num_elements=100000, parser="lxml"):
filehandle = tempfile.NamedTemporaryFile()
filename = filehandle.name
data = rdoc(num_elements)
vars = dict(bs4=bs4, data=data, parser=parser)
cProfile.runctx('bs4.BeautifulSoup(data, parser)' , vars, vars, filename)
stats = pstats.Stats(filename)
# stats.strip_dirs()
stats.sort_stats("cumulative")
stats.print_stats('_html5lib|bs4', 50)
def main(_):
config = create_config()
trainer = Trainer(config)
# Register signal handler
def stop_training(signum, frame):
trainer.stop_training()
signal.signal(signal.SIGINT, stop_training)
if config.profile:
import cProfile as profile
profile.runctx('trainer.train()', globals(), locals(), 'main.prof')
else:
trainer.train()
def profile(num_elements=100000, parser="lxml"):
filehandle = tempfile.NamedTemporaryFile()
filename = filehandle.name
data = rdoc(num_elements)
vars = dict(bs4=bs4, data=data, parser=parser)
cProfile.runctx('bs4.BeautifulSoup(data, parser)' , vars, vars, filename)
stats = pstats.Stats(filename)
# stats.strip_dirs()
stats.sort_stats("cumulative")
stats.print_stats('_html5lib|bs4', 50)
def profile(num_elements=100000, parser="lxml"):
filehandle = tempfile.NamedTemporaryFile()
filename = filehandle.name
data = rdoc(num_elements)
vars = dict(bs4=bs4, data=data, parser=parser)
cProfile.runctx('bs4.BeautifulSoup(data, parser)' , vars, vars, filename)
stats = pstats.Stats(filename)
# stats.strip_dirs()
stats.sort_stats("cumulative")
stats.print_stats('_html5lib|bs4', 50)
diagnose.py 文件源码
项目:ServerlessCrawler-VancouverRealState
作者: MarcelloLins
项目源码
文件源码
阅读 44
收藏 0
点赞 0
评论 0
def profile(num_elements=100000, parser="lxml"):
filehandle = tempfile.NamedTemporaryFile()
filename = filehandle.name
data = rdoc(num_elements)
vars = dict(bs4=bs4, data=data, parser=parser)
cProfile.runctx('bs4.BeautifulSoup(data, parser)' , vars, vars, filename)
stats = pstats.Stats(filename)
# stats.strip_dirs()
stats.sort_stats("cumulative")
stats.print_stats('_html5lib|bs4', 50)
diagnose.py 文件源码
项目:ServerlessCrawler-VancouverRealState
作者: MarcelloLins
项目源码
文件源码
阅读 21
收藏 0
点赞 0
评论 0
def profile(num_elements=100000, parser="lxml"):
filehandle = tempfile.NamedTemporaryFile()
filename = filehandle.name
data = rdoc(num_elements)
vars = dict(bs4=bs4, data=data, parser=parser)
cProfile.runctx('bs4.BeautifulSoup(data, parser)' , vars, vars, filename)
stats = pstats.Stats(filename)
# stats.strip_dirs()
stats.sort_stats("cumulative")
stats.print_stats('_html5lib|bs4', 50)
diagnose.py 文件源码
项目:ServerlessCrawler-VancouverRealState
作者: MarcelloLins
项目源码
文件源码
阅读 25
收藏 0
点赞 0
评论 0
def profile(num_elements=100000, parser="lxml"):
filehandle = tempfile.NamedTemporaryFile()
filename = filehandle.name
data = rdoc(num_elements)
vars = dict(bs4=bs4, data=data, parser=parser)
cProfile.runctx('bs4.BeautifulSoup(data, parser)' , vars, vars, filename)
stats = pstats.Stats(filename)
# stats.strip_dirs()
stats.sort_stats("cumulative")
stats.print_stats('_html5lib|bs4', 50)
def profile(num_elements=100000, parser="lxml"):
filehandle = tempfile.NamedTemporaryFile()
filename = filehandle.name
data = rdoc(num_elements)
vars = dict(bs4=bs4, data=data, parser=parser)
cProfile.runctx('bs4.BeautifulSoup(data, parser)' , vars, vars, filename)
stats = pstats.Stats(filename)
# stats.strip_dirs()
stats.sort_stats("cumulative")
stats.print_stats('_html5lib|bs4', 50)
def profile(num_elements=100000, parser="lxml"):
filehandle = tempfile.NamedTemporaryFile()
filename = filehandle.name
data = rdoc(num_elements)
vars = dict(bs4=bs4, data=data, parser=parser)
cProfile.runctx('bs4.BeautifulSoup(data, parser)' , vars, vars, filename)
stats = pstats.Stats(filename)
# stats.strip_dirs()
stats.sort_stats("cumulative")
stats.print_stats('_html5lib|bs4', 50)