def parse_arguments(description: str):
logging.getLogger().setLevel(logging.DEBUG)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("requests").setLevel(logging.WARNING)
parser = argparse.ArgumentParser(
description=description,
formatter_class=argparse.MetavarTypeHelpFormatter)
parser.add_argument('--port',
type=int,
default=5103,
help='Port to bind flask App to, default is 5103')
parser.add_argument('--train',
type=str,
help='Path to csv file for training')
parser.add_argument('--buy',
type=str,
help='Path to buyOffer.csv')
parser.add_argument('--merchant',
type=str,
help='Merchant ID for initial csv parsing')
parser.add_argument('--test',
type=str,
help='Path to csv file for cross validation')
parser.add_argument('--output',
type=str,
help='Output will be written into the spedified file')
return parser.parse_args()
python类MetavarTypeHelpFormatter()的实例源码
def _main_():
parser = argparse.ArgumentParser(description="Detect object in an image",
formatter_class=argparse.MetavarTypeHelpFormatter)
parser.add_argument('--path', type=str, default='./assets/example.jpg',
help="Path to image file")
parser.add_argument('--weights', type=str, default='./assets/coco_yolov2.weights',
help="Path to pre-trained weight file")
parser.add_argument('--output_dir', type=str, default=None,
help="Output Directory")
parser.add_argument('--iou', type=float, default=0.5,
help="Intersection over Union (IoU) value")
parser.add_argument('--threshold', type=float, default=0.6,
help="Score Threshold value (minimum accuracy)")
# ############
# Parse Config
# ############
args = parser.parse_args()
anchors, label_dict = parse_config(cfg)
# ###################
# Define Keras Model
# ###################
model = yolov2_darknet(is_training = False,
img_size = cfg.IMG_INPUT_SIZE,
anchors = anchors,
num_classes = cfg.N_CLASSES,
iou = args.iou,
scores_threshold = args.threshold)
model.load_weights(args.weights)
model.summary()
# #####################
# Make one prediction #
# #####################
image = np.expand_dims(cv2.imread(args.path), axis=0)
pred_bboxes, pred_classes, pred_scores = model.predict_on_batch(image)
pred_classes = [label_dict[idx] for idx in pred_classes]
# #################
# Display Result #
# #################
h, w, _ = image.shape
if args.output_dir is not None:
result = draw(image, pred_bboxes, pred_classes, pred_scores)
cv2.imwrite(os.path.join(args.output_dir, args.path.split('/')[-1].split('.')[0] + '_result.jpg'), result)