def readinto(self, b):
"""Read up to len(b) bytes into the writable buffer *b* and return
the number of bytes read. If the socket is non-blocking and no bytes
are available, None is returned.
If *b* is non-empty, a 0 return value indicates that the connection
was shutdown at the other end.
"""
self._checkClosed()
self._checkReadable()
if self._timeout_occurred:
raise OSError("cannot read from timed out object")
while True:
try:
return self._sock.recv_into(b)
except timeout:
self._timeout_occurred = True
raise
except InterruptedError:
continue
except error as e:
if e.args[0] in _blocking_errnos:
return None
raise
python类socket()的实例源码
def getaddrinfo(host, port, family=0, type=0, proto=0, flags=0):
"""Resolve host and port into list of address info entries.
Translate the host/port argument into a sequence of 5-tuples that contain
all the necessary arguments for creating a socket connected to that service.
host is a domain name, a string representation of an IPv4/v6 address or
None. port is a string service name such as 'http', a numeric port number or
None. By passing None as the value of host and port, you can pass NULL to
the underlying C API.
The family, type and proto arguments can be optionally specified in order to
narrow the list of addresses returned. Passing zero as a value for each of
these arguments selects the full range of results.
"""
# We override this function since we want to translate the numeric family
# and socket type values to enum constants.
addrlist = []
for res in _socket.getaddrinfo(host, port, family, type, proto, flags):
af, socktype, proto, canonname, sa = res
addrlist.append((_intenum_converter(af, AddressFamily),
_intenum_converter(socktype, SocketKind),
proto, canonname, sa))
return addrlist
def socketpair(family=None, type=SOCK_STREAM, proto=0):
"""socketpair([family[, type[, proto]]]) -> (socket object, socket object)
Create a pair of socket objects from the sockets returned by the platform
socketpair() function.
The arguments are the same as for socket() except the default family is
AF_UNIX if defined on the platform; otherwise, the default is AF_INET.
"""
if family is None:
try:
family = AF_UNIX
except NameError:
family = AF_INET
a, b = _socket.socketpair(family, type, proto)
a = socket(family, type, proto, a.detach())
b = socket(family, type, proto, b.detach())
return a, b
def readinto(self, b):
"""Read up to len(b) bytes into the writable buffer *b* and return
the number of bytes read. If the socket is non-blocking and no bytes
are available, None is returned.
If *b* is non-empty, a 0 return value indicates that the connection
was shutdown at the other end.
"""
self._checkClosed()
self._checkReadable()
if self._timeout_occurred:
raise IOError("cannot read from timed out object")
while True:
try:
return self._sock.recv_into(b)
except timeout:
self._timeout_occurred = True
raise
except error as e:
n = e.args[0]
if n == EINTR:
continue
if n in _blocking_errnos:
return None
raise
def testHostnameRes(self):
# Testing hostname resolution mechanisms
hostname = socket.gethostname()
try:
ip = socket.gethostbyname(hostname)
except socket.error:
# Probably name lookup wasn't set up right; skip this test
self.skipTest('name lookup failure')
self.assertTrue(ip.find('.') >= 0, "Error resolving host to ip.")
try:
hname, aliases, ipaddrs = socket.gethostbyaddr(ip)
except socket.error:
# Probably a similar problem as above; skip this test
self.skipTest('address lookup failure')
all_host_names = [hostname, hname] + aliases
fqhn = socket.getfqdn(ip)
if not fqhn in all_host_names:
self.fail("Error testing host resolution mechanisms. (fqdn: %s, all: %s)" % (fqhn, repr(all_host_names)))
def testIPv6toString(self):
try:
from socket import inet_pton, AF_INET6, has_ipv6
if not has_ipv6:
self.skipTest('IPv6 not available')
except ImportError:
self.skipTest('could not import needed symbols from socket')
f = lambda a: inet_pton(AF_INET6, a)
self.assertEqual('\x00' * 16, f('::'))
self.assertEqual('\x00' * 16, f('0::0'))
self.assertEqual('\x00\x01' + '\x00' * 14, f('1::'))
self.assertEqual(
'\x45\xef\x76\xcb\x00\x1a\x56\xef\xaf\xeb\x0b\xac\x19\x24\xae\xae',
f('45ef:76cb:1a:56ef:afeb:bac:1924:aeae')
)
def testSockName(self):
# Testing getsockname()
port = self._get_unused_port()
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.addCleanup(sock.close)
sock.bind(("0.0.0.0", port))
name = sock.getsockname()
# XXX(nnorwitz): http://tinyurl.com/os5jz seems to indicate
# it reasonable to get the host's addr in addition to 0.0.0.0.
# At least for eCos. This is required for the S/390 to pass.
try:
my_ip_addr = socket.gethostbyname(socket.gethostname())
except socket.error:
# Probably name lookup wasn't set up right; skip this test
self.skipTest('name lookup failure')
self.assertIn(name[0], ("0.0.0.0", my_ip_addr), '%s invalid' % name[0])
self.assertEqual(name[1], port)
def test_getsockaddrarg(self):
sock = socket.socket()
self.addCleanup(sock.close)
port = test_support.find_unused_port()
big_port = port + 65536
neg_port = port - 65536
self.assertRaises(OverflowError, sock.bind, (HOST, big_port))
self.assertRaises(OverflowError, sock.bind, (HOST, neg_port))
# Since find_unused_port() is inherently subject to race conditions, we
# call it a couple times if necessary.
for i in itertools.count():
port = test_support.find_unused_port()
try:
sock.bind((HOST, port))
except OSError as e:
if e.errno != errno.EADDRINUSE or i == 5:
raise
else:
break
def testRecv(self):
# Testing non-blocking recv
conn, addr = self.serv.accept()
conn.setblocking(0)
try:
msg = conn.recv(len(MSG))
except socket.error:
pass
else:
self.fail("Error trying to do non-blocking recv.")
read, write, err = select.select([conn], [], [])
if conn in read:
msg = conn.recv(len(MSG))
conn.close()
self.assertEqual(msg, MSG)
else:
self.fail("Error during select call to non-blocking socket.")
def _broadcast_ip():
cs = socket(AF_INET, SOCK_DGRAM)
cs.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
cs.setsockopt(SOL_SOCKET, SO_BROADCAST, 1)
try:
while _broadcast:
try:
cs.sendto("8443".encode("utf-8"), ('255.255.255.255', 42945))
except OSError as network_error:
logger.warning("Error while broadcasting: %s", str(network_error))
time.sleep(3)
finally:
cs.close()
def get_local_ip_address():
s = socket(AF_INET, SOCK_DGRAM)
s.connect(("8.8.8.8", 80))
return s.getsockname()[0]
def wait_read(fileno, timeout=None, timeout_exc=timeout('timed out')):
"""Block the current greenlet until *fileno* is ready to read.
If *timeout* is non-negative, then *timeout_exc* is raised after *timeout* second has passed.
By default *timeout_exc* is ``socket.timeout('timed out')``.
If :func:`cancel_wait` is called, raise ``socket.error(EBADF, 'File descriptor was closed in another greenlet')``.
"""
io = get_hub().loop.io(fileno, 1)
return wait(io, timeout, timeout_exc)
def wait_write(fileno, timeout=None, timeout_exc=timeout('timed out'), event=None):
"""Block the current greenlet until *fileno* is ready to write.
If *timeout* is non-negative, then *timeout_exc* is raised after *timeout* second has passed.
By default *timeout_exc* is ``socket.timeout('timed out')``.
If :func:`cancel_wait` is called, raise ``socket.error(EBADF, 'File descriptor was closed in another greenlet')``.
"""
io = get_hub().loop.io(fileno, 2)
return wait(io, timeout, timeout_exc)
def wait_readwrite(fileno, timeout=None, timeout_exc=timeout('timed out'), event=None):
"""Block the current greenlet until *fileno* is ready to read or write.
If *timeout* is non-negative, then *timeout_exc* is raised after *timeout* second has passed.
By default *timeout_exc* is ``socket.timeout('timed out')``.
If :func:`cancel_wait` is called, raise ``socket.error(EBADF, 'File descriptor was closed in another greenlet')``.
"""
io = get_hub().loop.io(fileno, 3)
return wait(io, timeout, timeout_exc)
def dup(self):
"""dup() -> socket object
Return a new socket object connected to the same system resource.
Note, that the new socket does not inherit the timeout."""
return socket(_sock=self._sock)
def makefile(self, mode='r', bufsize=-1):
# Two things to look out for:
# 1) Closing the original socket object should not close the
# socket (hence creating a new instance)
# 2) The resulting fileobject must keep the timeout in order
# to be compatible with the stdlib's socket.makefile.
return _fileobject(type(self)(_sock=self), mode, bufsize)
def socketpair(*args):
one, two = _socket.socketpair(*args)
return socket(_sock=one), socket(_sock=two)
def fromfd(*args):
return socket(_sock=_socket.fromfd(*args))
def create_connection(address, timeout=_GLOBAL_DEFAULT_TIMEOUT, source_address=None):
"""Connect to *address* and return the socket object.
Convenience function. Connect to *address* (a 2-tuple ``(host,
port)``) and return the socket object. Passing the optional
*timeout* parameter will set the timeout on the socket instance
before attempting to connect. If no *timeout* is supplied, the
global default timeout setting returned by :func:`getdefaulttimeout`
is used. If *source_address* is set it must be a tuple of (host, port)
for the socket to bind as a source address before making the connection.
An host of '' or port 0 tells the OS to use the default.
"""
host, port = address
err = None
for res in getaddrinfo(host, port, 0 if has_ipv6 else AF_INET, SOCK_STREAM):
af, socktype, proto, _canonname, sa = res
sock = None
try:
sock = socket(af, socktype, proto)
if timeout is not _GLOBAL_DEFAULT_TIMEOUT:
sock.settimeout(timeout)
if source_address:
sock.bind(source_address)
sock.connect(sa)
return sock
except error:
err = sys.exc_info()[1]
# without exc_clear(), if connect() fails once, the socket is referenced by the frame in exc_info
# and the next bind() fails (see test__socket.TestCreateConnection)
# that does not happen with regular sockets though, because _socket.socket.connect() is a built-in.
# this is similar to "getnameinfo loses a reference" failure in test_socket.py
sys.exc_clear()
if sock is not None:
sock.close()
if err is not None:
raise err
else:
raise error("getaddrinfo returns an empty list")
def wait_read(fileno, timeout=None, timeout_exc=timeout('timed out')):
"""Block the current greenlet until *fileno* is ready to read.
If *timeout* is non-negative, then *timeout_exc* is raised after *timeout* second has passed.
By default *timeout_exc* is ``socket.timeout('timed out')``.
If :func:`cancel_wait` is called, raise ``socket.error(EBADF, 'File descriptor was closed in another greenlet')``.
"""
io = get_hub().loop.io(fileno, 1)
return wait(io, timeout, timeout_exc)