python类Image()的实例源码

predict_video_res10.py 文件源码 项目:EmotiW-2017-Audio-video-Emotion-Recognition 作者: xujinchang 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def predict(image,the_net):
    inputs = []
    try:
        tmp_input = image
        tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
        tmp_input = tmp_input[11:11+128,11:11+128];
        tmp_input = np.subtract(tmp_input,mean)
        tmp_input = tmp_input.transpose((2, 0, 1))
        tmp_input = np.require(tmp_input, dtype=np.float32)
    except Exception as e:
        raise Exception("Image damaged or illegal file format")
        return
    the_net.blobs['data'].reshape(1, *tmp_input.shape)
    the_net.reshape()
    the_net.blobs['data'].data[...] = tmp_input
    the_net.forward()
    scores = the_net.blobs['prob'].data[0]
    return copy.deepcopy(scores)
test_vgg.py 文件源码 项目:EmotiW-2017-Audio-video-Emotion-Recognition 作者: xujinchang 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def predict(image,the_net):
    inputs = []
    try:
        tmp_input = image
        tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
        tmp_input = tmp_input[13:13+224,13:13+224];
        tmp_input = np.subtract(tmp_input,mean)
        tmp_input = tmp_input.transpose((2, 0, 1))
        tmp_input = np.require(tmp_input, dtype=np.float32)
    except Exception as e:
        raise Exception("Image damaged or illegal file format")
        return
    the_net.blobs['data'].reshape(1, *tmp_input.shape)
    the_net.reshape()
    the_net.blobs['data'].data[...] = tmp_input
    the_net.forward()
    scores = the_net.blobs['prob'].data[0]
    return copy.deepcopy(scores)
test_res10.py 文件源码 项目:EmotiW-2017-Audio-video-Emotion-Recognition 作者: xujinchang 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def predict(image,the_net):
    inputs = []
    try:
        tmp_input = image
        tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
        tmp_input = tmp_input[11:11+128,11:11+128];
        tmp_input = np.subtract(tmp_input,mean)
        tmp_input = tmp_input.transpose((2, 0, 1))
        tmp_input = np.require(tmp_input, dtype=np.float32)
    except Exception as e:
        raise Exception("Image damaged or illegal file format")
        return
    the_net.blobs['data'].reshape(1, *tmp_input.shape)
    the_net.reshape()
    the_net.blobs['data'].data[...] = tmp_input
    the_net.forward()
    scores = the_net.blobs['prob'].data[0]
    return copy.deepcopy(scores)
test_afew_face_res10.py 文件源码 项目:EmotiW-2017-Audio-video-Emotion-Recognition 作者: xujinchang 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def predict(image,the_net):
    inputs = []
    try:
        tmp_input = image
        tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
        tmp_input = tmp_input[11:11+128,11:11+128];
        tmp_input = np.subtract(tmp_input,mean)
        tmp_input = tmp_input.transpose((2, 0, 1))
        tmp_input = np.require(tmp_input, dtype=np.float32)
    except Exception as e:
        raise Exception("Image damaged or illegal file format")
        return
    the_net.blobs['data'].reshape(1, *tmp_input.shape)
    the_net.reshape()
    the_net.blobs['data'].data[...] = tmp_input
    the_net.forward()
    scores = the_net.blobs['prob'].data[0]
    return copy.deepcopy(scores)
predict_video.py 文件源码 项目:EmotiW-2017-Audio-video-Emotion-Recognition 作者: xujinchang 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def predict(image,the_net):
    inputs = []
    try:
        tmp_input = image
        tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
        tmp_input = tmp_input[13:13+224,13:13+224];
        tmp_input = np.subtract(tmp_input,mean)
        tmp_input = tmp_input.transpose((2, 0, 1))
        tmp_input = np.require(tmp_input, dtype=np.float32)
    except Exception as e:
        raise Exception("Image damaged or illegal file format")
        return
    the_net.blobs['data'].reshape(1, *tmp_input.shape)
    the_net.reshape()
    the_net.blobs['data'].data[...] = tmp_input
    the_net.forward()
    scores = the_net.blobs['prob'].data[0]
    return copy.deepcopy(scores)
mnist.py 文件源码 项目:cortex 作者: rdevon 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def show(self, image, tshape):
        '''Convers to PIL.image.

        Args:
            image (numpy.array)
            tshape (tuple).

        Returns:
            PIL.Image: image to visualize.

        '''
        fshape = self.image_shape
        X = image.T

        return PIL.Image.fromarray(tile_raster_images(
            X=X, img_shape=fshape, tile_shape=tshape,
            tile_spacing=(1, 1)))
caffe_functions.py 文件源码 项目:RealtimeFacialEmotionRecognition 作者: sushant3095 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def vis_square(data, padsize=1, padval=0):
    data -= data.min()
    data /= data.max()

    # Force the number of filters to be square
    n = int(np.ceil(np.sqrt(data.shape[0])))
    padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
    #UNCOMMENT_THIS data = np.pad(data, padding, mode='reflect', constant_values=(padval, padval))
    data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))

    # Tile the filters into an image
    data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
    data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
    #IF you want to use Show Image for static images, comment out thr if and return statements 
    if data.ndim == 3:
        data = data[:, :, ::-1]
    return data

    #showimage(data)

# Plot the last image and conv1 layer's weights and responses
enhance.py 文件源码 项目:supic 作者: Hirico 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def supic_process(input_path, output_dir, out_width, out_height):
    """ customized api for processing input image """
    try:
        enhancer = NeuralEnhancer(loader=False)
        img = scipy.ndimage.imread(input_path, mode='RGB')

        out = enhancer.process(img)
        out = out.resize((out_width, out_height), PIL.Image.BICUBIC)

        name = hex(int(time.time() * 100000))[2:]
        output_path = os.path.join(output_dir, name + '.png')

        out.save(output_path)
        return output_path
    except Exception as e:
        return '!ERROR' + str(e)
thumb.py 文件源码 项目:omnic 作者: michaelpb 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def generate_thumb(self, size, orig_resource, thumb_resource):
        with orig_resource.cache_open() as orig:
            im = self.Image.open(orig)
            im.thumbnail(size)
        with thumb_resource.cache_open('wb') as target:
            if thumb_resource.typestring.ts_format == 'thumb.jpg':
                # Ensure it has no alpha before saving
                p_mode_alpha = (im.mode == 'P' and 'transparency' in im.info)
                if im.mode in ('RGBA', 'LA') or p_mode_alpha:
                    alpha = im.convert('RGBA').split()[-1]
                    no_alpha = self.Image.new("RGB", im.size, (255, 255, 255))
                    no_alpha.paste(im, mask=alpha)
                    no_alpha.save(target, 'JPEG')
                else:
                    im.save(target, 'JPEG')
            else:
                # Save as is
                im.save(target)
test_libraries.py 文件源码 项目:driveboardapp 作者: nortd 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_pil_plugins(pyi_builder):
    pyi_builder.test_source(
        """
        # Verify packaging of PIL.Image. Specifically, the hidden import of FixTk
        # importing tkinter is causing some problems.
        from PIL.Image import fromstring
        print(fromstring)

        # PIL import hook should bundle all available PIL plugins. Verify that plugins
        # are bundled.
        from PIL import Image
        Image.init()
        MIN_PLUG_COUNT = 7  # Without all plugins the count is usually 6.
        plugins = list(Image.SAVE.keys())
        plugins.sort()
        if len(plugins) < MIN_PLUG_COUNT:
            raise SystemExit('No PIL image plugins were bundled!')
        else:
            print('PIL supported image formats: %s' % plugins)
        """)
tests.py 文件源码 项目:munch-core 作者: crunchmail 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_image_resizing(self):
        image = Image(organization=self.organization)
        file = ContentFile(self.create_random_image(100, 100).read())

        image.file.save('random_image.png', file, save=False)
        image.save()

        image_file = PIL.Image.open(image.file.file)
        self.assertEqual((100, 100), image_file.size)

        image = Image(organization=self.organization)
        file = ContentFile(self.create_random_image(100, 100).read())

        image.file.save('random_image.png', file, save=False)
        image.width = 50
        image.save()

        image_file = PIL.Image.open(image.file.file)
        self.assertEqual((50, 50), image_file.size)
14_DeepDream.py 文件源码 项目:LIE 作者: EmbraceLife 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def plot_image(image):
    # Assume the pixel-values are scaled between 0 and 255.

    if False:
        # Convert the pixel-values to the range between 0.0 and 1.0
        image = np.clip(image/255.0, 0.0, 1.0)

        # Plot using matplotlib.
        plt.imshow(image, interpolation='lanczos')
        plt.show()
    else:
        # Ensure the pixel-values are between 0 and 255.
        image = np.clip(image, 0.0, 255.0)

        # Convert pixels to bytes.
        image = image.astype(np.uint8)

        # Convert to a PIL-image and display it.
        display(PIL.Image.fromarray(image))


# Normalize an image so its values are between 0.0 and 1.0. This is useful for plotting the gradient.

# In[13]:
imViewer_Simple.py 文件源码 项目:augment3D 作者: yulkang 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def loadPIL_LUT(self, dataset):
        if not have_PIL:
            raise ImportError("Python Imaging Library is not available. See http://www.pythonware.com/products/pil/ to download and install")
        if('PixelData' not in dataset):
            raise TypeError("Cannot show image -- DICOM dataset does not have pixel data")
        if('WindowWidth' not in dataset) or ('WindowCenter' not in dataset):  # can only apply LUT if these values exist
            bits = dataset.BitsAllocated
            samples = dataset.SamplesPerPixel
            if bits == 8 and samples == 1:
                mode = "L"
            elif bits == 8 and samples == 3:
                mode = "RGB"
            elif bits == 16:  # not sure about this -- PIL source says is 'experimental' and no documentation.
                mode = "I;16"  # Also, should bytes swap depending on endian of file and system??
            else:
                raise TypeError("Don't know PIL mode for %d BitsAllocated and %d SamplesPerPixel" % (bits, samples))
            size = (dataset.Columns, dataset.Rows)
            im = PIL.Image.frombuffer(mode, size, dataset.PixelData, "raw", mode, 0, 1)  # Recommended to specify all details by http://www.pythonware.com/library/pil/handbook/image.htm
        else:
            image = self.get_LUT_value(dataset.pixel_array, dataset.WindowWidth, dataset.WindowCenter)
            im = PIL.Image.fromarray(image).convert('L')  # Convert mode to L since LUT has only 256 values: http://www.pythonware.com/library/pil/handbook/image.htm
        return im
visualization.py 文件源码 项目:tensorlight 作者: bsautermeister 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def image_from_array(img_array, format='png'):
    """Creates an image object from a given numpy array.
    Parameters
    ----------
    img_array : numpy.ndarray
        The image data, which can have 1 or 3 color channels.
    Returns
    -------
    IPython.display.Image
        An image object for plots.
    """
    factor = 1
    if utils.image.is_float_image(img_array):
        factor = 255

    img_data = np.uint8(img_array * factor)
    f = StringIO()
    img_data = utils.image.to_rgb(img_data)
    arr = PIL.Image.fromarray(img_data)
    arr.save(f, format)
    return Image(data=f.getvalue())
ImageSimilarFinder.py 文件源码 项目:ImageSimilarFinder 作者: zhangjizxc 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def load_image(filename):
    image = None
    if wand is not None:
        try:
          image=wand.image.Image(filename=filename)
        except:
          image = None
        return image
    elif PIL is not None:
        try:
          image=PIL.Image.open(filename)
        except:
          image = None
          print(filename+" is not a invalid img!")
        return image
    else:
        sys.stderr.write('You must have wand or Pillow/PIL installed to use the dhash command\n')
        sys.exit(1)
ImageSimilarFinder.py 文件源码 项目:ImageSimilarFinder 作者: zhangjizxc 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def arrangePics(targetDir, picDir):
    targetDirPathLen=len(targetDir)
    count=0
    for path, d, filelist in os.walk(targetDir):
        if (not path.endswith('.git')) and isPathInList(targetLimitedSubDirs, path):
            for filename in filelist:
                if (filename.endswith('jpg') or filename.endswith('png') or filename.endswith('jpeg') or filename.endswith('gif')):
                    fileNameWithPath = os.path.join(path, filename)
                    image = load_image(fileNameWithPath)
                    if (image is not None):
                        ratio = format(float(image.height) / float(image.width), '.2f')
                        tempPath = os.path.join(picDir, str(ratio))
                        if (not os.path.exists(tempPath)):
                            os.mkdir(tempPath)
                        filenameNew=fileNameWithPath[targetDirPathLen+1:].replace('/', "_", 50)
                        tempFileNameWithPath = os.path.join(tempPath, filenameNew)
                        print(fileNameWithPath+"  copy to "+tempFileNameWithPath)
                        count = count + 1
                        shutil.copy(fileNameWithPath, tempFileNameWithPath)
    print("Total Image count is "+str(count))
agent.py 文件源码 项目:ccmas-imgen 作者: ccmas-imgen 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def similarity(self, imgA, imgB):
        """Given two images of the same size, this function compute the similarity of the pixel
        values. The function compute the differences of RGB values of a pixel and weight it with
        the alpha value.

        :param imgA: Image to be compared.
        :param imgB: Image to be compared.
        :returns:
            Similarity of two images. 
        """
        #
        # print(imgA)
        # print(imgB)

        delta_R = imgA[:,:,0] - imgB[:,:,0]
        delta_G = imgA[:,:,1] - imgB[:,:,1]
        delta_B = imgA[:,:,2] - imgB[:,:,2]

        delta = (np.absolute(delta_R) + np.absolute(delta_G) + np.absolute(delta_B)) / 3

        return (1 - np.mean(delta))
imViewer_Simple.py 文件源码 项目:bids 作者: robertoostenveld 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def loadPIL_LUT(self, dataset):
        if not have_PIL:
            raise ImportError("Python Imaging Library is not available. See http://www.pythonware.com/products/pil/ to download and install")
        if('PixelData' not in dataset):
            raise TypeError("Cannot show image -- DICOM dataset does not have pixel data")
        if('WindowWidth' not in dataset) or ('WindowCenter' not in dataset):  # can only apply LUT if these values exist
            bits = dataset.BitsAllocated
            samples = dataset.SamplesPerPixel
            if bits == 8 and samples == 1:
                mode = "L"
            elif bits == 8 and samples == 3:
                mode = "RGB"
            elif bits == 16:  # not sure about this -- PIL source says is 'experimental' and no documentation.
                mode = "I;16"  # Also, should bytes swap depending on endian of file and system??
            else:
                raise TypeError("Don't know PIL mode for %d BitsAllocated and %d SamplesPerPixel" % (bits, samples))
            size = (dataset.Columns, dataset.Rows)
            im = PIL.Image.frombuffer(mode, size, dataset.PixelData, "raw", mode, 0, 1)  # Recommended to specify all details by http://www.pythonware.com/library/pil/handbook/image.htm
        else:
            image = self.get_LUT_value(dataset.pixel_array, dataset.WindowWidth, dataset.WindowCenter)
            im = PIL.Image.fromarray(image).convert('L')  # Convert mode to L since LUT has only 256 values: http://www.pythonware.com/library/pil/handbook/image.htm
        return im
conftest.py 文件源码 项目:org-chart-builder 作者: Hitachi-Data-Systems 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def pytest_runtest_setup(item):
    if isinstance(item, item.Function):
        try:
            from PIL import Image
        except ImportError:
            Image = False
        if item.get_marker("pil_required") and Image is False:
            pytest.skip("PIL must be installed")
        elif item.get_marker("pil_not_installed") and Image:
            pytest.skip("PIL is installed")
        elif item.get_marker("not_py33"):
            pytest.skip("Ordering is not a given in Python 3")
        elif item.get_marker("lxml_required"):
            from openpyxl import LXML
            if not LXML:
                pytest.skip("LXML is required for some features such as schema validation")
AppGUI.py 文件源码 项目:stash-scanner 作者: senuido 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def onDownloadComplete(self, url, data):
        self.requested = False
        if not data:
            # print('Request Failed: {}'. format(self.result.item.name))
            return
        if self.image:
            return

        # CONVERT DATA TO GIF IMAGE
        try:
            img = PIL.Image.open(data)
            self.image = PIL.ImageTk.PhotoImage(img)
            self.updateOverlayImage(img)

            if url not in self.CACHE:
                self.CACHE[url] = data

            # notify ui
            self.ui_queue.put((MsgType.Object, self))
        except OSError as e:
            item = self.item
            with open('tmp\\{}.err.png'.format(item.name.strip()), mode='wb') as f:
                f.write(data.getvalue())
            logger.error('Image conversion failed: {}, Length: {}\t{}'.format(item.name, len(data.getvalue()), url))
wc_common.py 文件源码 项目:wahcade 作者: sairuk 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def pil_image_to_pixbuf(self, image_fn, angle):
        """use Python Image Library (PIL) to load an image, rotate it, and return as a pixbuf)
        """
        pixbuf = None
        if os.path.isfile(image_fn):
            pil_image = PIL.Image.open(image_fn)
            if angle is not 0:
                pil_image = pil_image.rotate(angle,PIL.Image.BICUBIC,1)
            fd = StringIO.StringIO()
            pil_image.save(fd, "png")
            contents = fd.getvalue()
            fd.close()
            loader = gtk.gdk.PixbufLoader("png")
            loader.write(contents, len(contents))
            pixbuf = loader.get_pixbuf()
            loader.close()
        #done
        return pixbuf
general.py 文件源码 项目:mxbox 作者: Lyken17 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __call__(self, img):
        """
        Args:
            img (PIL.Image): Image to be scaled.

        Returns:
            PIL.Image: Rescaled image.
        """
        if isinstance(self.size, int):
            w, h = img.size
            if (w <= h and w == self.size) or (h <= w and h == self.size):
                return img
            if w < h:
                ow = self.size
                oh = int(self.size * h / w)
                return img.resize((ow, oh), self.interpolation)
            else:
                oh = self.size
                ow = int(self.size * w / h)
                return img.resize((ow, oh), self.interpolation)
        else:
            return img.resize(self.size, self.interpolation)
test_libraries.py 文件源码 项目:mac-package-build 作者: persepolisdm 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_pil_plugins(pyi_builder):
    pyi_builder.test_source(
        """
        # Verify packaging of PIL.Image. Specifically, the hidden import of FixTk
        # importing tkinter is causing some problems.
        from PIL.Image import fromstring
        print(fromstring)

        # PIL import hook should bundle all available PIL plugins. Verify that plugins
        # are bundled.
        from PIL import Image
        Image.init()
        MIN_PLUG_COUNT = 7  # Without all plugins the count is usually 6.
        plugins = list(Image.SAVE.keys())
        plugins.sort()
        if len(plugins) < MIN_PLUG_COUNT:
            raise SystemExit('No PIL image plugins were bundled!')
        else:
            print('PIL supported image formats: %s' % plugins)
        """)
DeepDream.py 文件源码 项目:QScode 作者: PierreHao 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def Run(self, img_path, guide_image_path='', objective=0):
        """Run deep dream"""
        self.guide_path = guide_image_path
        if self.guide_path != '':
            self.Get_guide()
        self.net.blobs.keys()
        if img_path != '':
            frame = PIL.Image.open(img_path)
            frame = imresize(frame)
            frame = np.float32(frame)
        else:
            frame = self.GenerateInputImage()
        frame_i = 0
        h, w = frame.shape[:2]
        #s = 0.05 # scale coefficient
        for i in xrange(self.epoch):
            start = time.time()
            frame = self.Deepdream(frame)
            PIL.Image.fromarray(np.uint8(frame)).save("frames/%04d.jpg"%frame_i)
            #frame = nd.affine_transform(frame, [1-s,1-s,1], [h*s/2,w*s/2,0], order=1)
            frame_i += 1
            stop = time.time()
            print "Time cost for {:d}th image: {:.3f} s".format(i,stop-start)
g4a-tensorflow.py 文件源码 项目:oio-sds-utils 作者: open-io 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def run_inference_on_image(image):
  """Runs inference on an image.

  Args:
    image: Image file name.

  Returns:
    Nothing
  """
  #image_data = tf.gfile.FastGFile(image, 'rb').read()
  image_data = image

  # Creates graph from saved GraphDef.
  #create_graph()

  with tf.Session() as sess:
    # Some useful tensors:
    # 'softmax:0': A tensor containing the normalized prediction across
    #   1000 labels.
    # 'pool_3:0': A tensor containing the next-to-last layer containing 2048
    #   float description of the image.
    # 'DecodeJpeg/contents:0': A tensor containing a string providing JPEG
    #   encoding of the image.
    # Runs the softmax tensor by feeding the image_data as input to the graph.
    softmax_tensor = sess.graph.get_tensor_by_name('softmax:0')
    predictions = sess.run(softmax_tensor,
                           {'DecodeJpeg/contents:0': image_data.tostring()})
    predictions = np.squeeze(predictions)
    sess.close()

    # Creates node ID --> English string lookup.
    node_lookup = NodeLookup()

    top_k = predictions.argsort()[1:][::-1]
    human_string = node_lookup.id_to_string(top_k[0])
    score = predictions[top_k[0]]
    return {
      'autocategory': human_string,
      'autocategoryconfidence': str(score)
      }
      #print('%s (score = %.5f)' % (human_string, score))
prng_stego.py 文件源码 项目:Steganography 作者: Ludisposed 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def check_space(text,data):
    if data.size < len(text):
        print '[*] Image not big enough'
        sys.exit(0)
script.py 文件源码 项目:deepdream 作者: martinkaptein 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def showarray(a, fmt='jpeg'):
    a = np.uint8(np.clip(a, 0, 255))
    f = StringIO()
    PIL.Image.fromarray(a).save(f, fmt)
    display(Image(data=f.getvalue()))


#ANIMAL model (default)
#Here you select the model
2models.py 文件源码 项目:deepdream 作者: martinkaptein 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def showarray(a, fmt='jpeg'):
    a = np.uint8(np.clip(a, 0, 255))
    f = StringIO()
    PIL.Image.fromarray(a).save(f, fmt)
    display(Image(data=f.getvalue()))


#ANIMAL model (default)
#Here you select the model
DreamControl.py 文件源码 项目:deepdream 作者: martinkaptein 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def showarray(a, fmt='jpeg'):
    a = np.uint8(np.clip(a, 0, 255))
    f = StringIO()
    PIL.Image.fromarray(a).save(f, fmt)
    display(Image(data=f.getvalue()))



#Here you select the model
layer_key_gen.py 文件源码 项目:deepdream 作者: martinkaptein 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def showarray(a, fmt='jpeg'):
    a = np.uint8(np.clip(a, 0, 255))
    f = StringIO()
    PIL.Image.fromarray(a).save(f, fmt)
    display(Image(data=f.getvalue()))


#ANIMAL
#PLEASE MAKE SURE TO SELECT THE RIGHT MODEL FOR THE KEYS!!!


问题


面经


文章

微信
公众号

扫码关注公众号