def from_string(key_pem, is_x509_cert):
"""Construct a Verified instance from a string.
Args:
key_pem: string, public key in PEM format.
is_x509_cert: bool, True if key_pem is an X509 cert, otherwise it
is expected to be an RSA key in PEM format.
Returns:
Verifier instance.
"""
if is_x509_cert:
key_pem = _to_bytes(key_pem)
pemLines = key_pem.replace(b' ', b'').split()
certDer = _urlsafe_b64decode(b''.join(pemLines[1:-1]))
certSeq = DerSequence()
certSeq.decode(certDer)
tbsSeq = DerSequence()
tbsSeq.decode(certSeq[0])
pubkey = RSA.importKey(tbsSeq[6])
else:
pubkey = RSA.importKey(key_pem)
return PyCryptoVerifier(pubkey)
python类importKey()的实例源码
def from_string(key, password='notasecret'):
"""Construct a Signer instance from a string.
Args:
key: string, private key in PEM format.
password: string, password for private key file. Unused for PEM
files.
Returns:
Signer instance.
Raises:
NotImplementedError if the key isn't in PEM format.
"""
parsed_pem_key = _parse_pem_key(_to_bytes(key))
if parsed_pem_key:
pkey = RSA.importKey(parsed_pem_key)
else:
raise NotImplementedError(
'PKCS12 format is not supported by the PyCrypto library. '
'Try converting to a "PEM" '
'(openssl pkcs12 -in xxxxx.p12 -nodes -nocerts > '
'privatekey.pem) '
'or using PyOpenSSL if native code is an option.')
return PyCryptoSigner(pkey)
def from_string(key_pem, is_x509_cert):
"""Construct a Verified instance from a string.
Args:
key_pem: string, public key in PEM format.
is_x509_cert: bool, True if key_pem is an X509 cert, otherwise it is
expected to be an RSA key in PEM format.
Returns:
Verifier instance.
Raises:
NotImplementedError if is_x509_cert is true.
"""
if is_x509_cert:
# raise NotImplementedError(
# 'X509 certs are not supported by the PyCrypto library. '
# 'Try using PyOpenSSL if native code is an option.')
key_pem = x509.get_pubkey(key_pem)
pubkey = RSA.importKey(key_pem)
return PyCryptoVerifier(pubkey)
def from_string(key, password='notasecret'):
"""Construct a Signer instance from a string.
Args:
key: string, private key in PEM format.
password: string, password for private key file. Unused for PEM files.
Returns:
Signer instance.
Raises:
NotImplementedError if they key isn't in PEM format.
"""
if key.startswith('-----BEGIN '):
pkey = RSA.importKey(key)
else:
raise NotImplementedError(
'PKCS12 format is not supported by the PyCrpto library. '
'Try converting to a "PEM" '
'(openssl pkcs12 -in xxxxx.p12 -nodes -nocerts > privatekey.pem) '
'or using PyOpenSSL if native code is an option.')
return PyCryptoSigner(pkey)
def verifySignature(self):
key = RSA.importKey(open(self.raven_public_key).read())
# Compile the parts to hash together
parts = self.rav_str.split("!")
parts.pop() # Remove the last two items related to signing
parts.pop()
to_hash = "!".join(parts)
# Now hash it and verify
our_hash = SHA.new(to_hash)
#print our_hash
verifier = PKCS1_v1_5.new(key)
# Obtain the correct form of the signature
signature = urllib.unquote(self.raven_signature)
signature = signature.replace("-","+")
signature = signature.replace(".","/")
signature = signature.replace("_","=")
signature = base64.b64decode(signature)
if verifier.verify(our_hash, signature):
return True
else:
return False
def testEncrypt1(self):
for test in self._testData:
# Build the key
key = RSA.importKey(test[0])
# RNG that takes its random numbers from a pool given
# at initialization
class randGen:
def __init__(self, data):
self.data = data
self.idx = 0
def __call__(self, N):
r = self.data[self.idx:N]
self.idx += N
return r
# The real test
key._randfunc = randGen(t2b(test[3]))
cipher = PKCS.new(key)
ct = cipher.encrypt(b(test[1]))
self.assertEqual(ct, t2b(test[2]))
def testSign1(self):
for i in range(len(self._testData)):
row = self._testData[i]
# Build the key
if isStr(row[0]):
key = RSA.importKey(row[0])
else:
comps = [ long(rws(row[0][x]),16) for x in ('n','e','d') ]
key = RSA.construct(comps)
h = row[3].new()
# Data to sign can either be in hex form or not
try:
h.update(t2b(row[1]))
except:
h.update(b(row[1]))
# The real test
signer = PKCS.new(key)
self.failUnless(signer.can_sign())
s = signer.sign(h)
self.assertEqual(s, t2b(row[2]))
def testVerify1(self):
for i in range(len(self._testData)):
row = self._testData[i]
# Build the key
if isStr(row[0]):
key = RSA.importKey(row[0]).publickey()
else:
comps = [ long(rws(row[0][x]),16) for x in ('n','e') ]
key = RSA.construct(comps)
h = row[3].new()
# Data to sign can either be in hex form or not
try:
h.update(t2b(row[1]))
except:
h.update(b(row[1]))
# The real test
verifier = PKCS.new(key)
self.failIf(verifier.can_sign())
result = verifier.verify(h, t2b(row[2]))
self.failUnless(result)
def from_string(key_pem, is_x509_cert):
"""Construct a Verified instance from a string.
Args:
key_pem: string, public key in PEM format.
is_x509_cert: bool, True if key_pem is an X509 cert, otherwise it
is expected to be an RSA key in PEM format.
Returns:
Verifier instance.
"""
if is_x509_cert:
key_pem = _helpers._to_bytes(key_pem)
pemLines = key_pem.replace(b' ', b'').split()
certDer = _helpers._urlsafe_b64decode(b''.join(pemLines[1:-1]))
certSeq = DerSequence()
certSeq.decode(certDer)
tbsSeq = DerSequence()
tbsSeq.decode(certSeq[0])
pubkey = RSA.importKey(tbsSeq[6])
else:
pubkey = RSA.importKey(key_pem)
return PyCryptoVerifier(pubkey)
def from_string(key, password='notasecret'):
"""Construct a Signer instance from a string.
Args:
key: string, private key in PEM format.
password: string, password for private key file. Unused for PEM
files.
Returns:
Signer instance.
Raises:
NotImplementedError if the key isn't in PEM format.
"""
parsed_pem_key = _helpers._parse_pem_key(_helpers._to_bytes(key))
if parsed_pem_key:
pkey = RSA.importKey(parsed_pem_key)
else:
raise NotImplementedError(
'No key in PEM format was detected. This implementation '
'can only use the PyCrypto library for keys in PEM '
'format.')
return PyCryptoSigner(pkey)
def import_ssh_key(private_key_file, passphrase=None):
"""
Import contents from RSA private key file
param private_key_file: path to private key file
param passphrase: passphrase for the private key, by default
None
return: contents from private key file
"""
key_file_contents = None
private_key_file = os.path.abspath(private_key_file)
try:
with open(private_key_file, 'r') as key_file:
key_file_contents = key_file.readlines()
return RSA.importKey(key_file_contents, passphrase=passphrase)
except IOError as ie:
raise exception.PrivateKeyNotFound(private_key_file)
except Exception as e:
raise exception.ImportKeyError(private_key_file)
def testEncrypt1(self):
for test in self._testData:
# Build the key
key = RSA.importKey(test[0])
# RNG that takes its random numbers from a pool given
# at initialization
class randGen:
def __init__(self, data):
self.data = data
self.idx = 0
def __call__(self, N):
r = self.data[self.idx:N]
self.idx += N
return r
# The real test
key._randfunc = randGen(t2b(test[3]))
cipher = PKCS.new(key)
ct = cipher.encrypt(b(test[1]))
self.assertEqual(ct, t2b(test[2]))
def testSign1(self):
for i in range(len(self._testData)):
row = self._testData[i]
# Build the key
if isStr(row[0]):
key = RSA.importKey(row[0])
else:
comps = [ long(rws(row[0][x]),16) for x in ('n','e','d') ]
key = RSA.construct(comps)
h = row[3].new()
# Data to sign can either be in hex form or not
try:
h.update(t2b(row[1]))
except:
h.update(b(row[1]))
# The real test
signer = PKCS.new(key)
self.failUnless(signer.can_sign())
s = signer.sign(h)
self.assertEqual(s, t2b(row[2]))
def testVerify1(self):
for i in range(len(self._testData)):
row = self._testData[i]
# Build the key
if isStr(row[0]):
key = RSA.importKey(row[0]).publickey()
else:
comps = [ long(rws(row[0][x]),16) for x in ('n','e') ]
key = RSA.construct(comps)
h = row[3].new()
# Data to sign can either be in hex form or not
try:
h.update(t2b(row[1]))
except:
h.update(b(row[1]))
# The real test
verifier = PKCS.new(key)
self.failIf(verifier.can_sign())
result = verifier.verify(h, t2b(row[2]))
self.failUnless(result)
def testEncrypt1(self):
for test in self._testData:
# Build the key
key = RSA.importKey(test[0])
# RNG that takes its random numbers from a pool given
# at initialization
class randGen:
def __init__(self, data):
self.data = data
self.idx = 0
def __call__(self, N):
r = self.data[self.idx:N]
self.idx += N
return r
# The real test
key._randfunc = randGen(t2b(test[3]))
cipher = PKCS.new(key)
ct = cipher.encrypt(b(test[1]))
self.assertEqual(ct, t2b(test[2]))
def testSign1(self):
for i in range(len(self._testData)):
row = self._testData[i]
# Build the key
if isStr(row[0]):
key = RSA.importKey(row[0])
else:
comps = [ long(rws(row[0][x]),16) for x in ('n','e','d') ]
key = RSA.construct(comps)
h = row[3].new()
# Data to sign can either be in hex form or not
try:
h.update(t2b(row[1]))
except:
h.update(b(row[1]))
# The real test
signer = PKCS.new(key)
self.failUnless(signer.can_sign())
s = signer.sign(h)
self.assertEqual(s, t2b(row[2]))
def testVerify1(self):
for i in range(len(self._testData)):
row = self._testData[i]
# Build the key
if isStr(row[0]):
key = RSA.importKey(row[0]).publickey()
else:
comps = [ long(rws(row[0][x]),16) for x in ('n','e') ]
key = RSA.construct(comps)
h = row[3].new()
# Data to sign can either be in hex form or not
try:
h.update(t2b(row[1]))
except:
h.update(b(row[1]))
# The real test
verifier = PKCS.new(key)
self.failIf(verifier.can_sign())
result = verifier.verify(h, t2b(row[2]))
self.failUnless(result)
def _build_auth_token_data(
self,
auth_token_ticket,
authenticator,
private_key,
**kwargs
):
auth_token = dict(
authenticator=authenticator,
ticket=auth_token_ticket,
**kwargs
)
auth_token = json.dumps(auth_token, sort_keys=True)
if six.PY3:
auth_token = auth_token.encode('utf-8')
digest = SHA256.new()
digest.update(auth_token)
auth_token = base64.b64encode(auth_token)
rsa_key = RSA.importKey(private_key)
signer = PKCS1_v1_5.new(rsa_key)
auth_token_signature = signer.sign(digest)
auth_token_signature = base64.b64encode(auth_token_signature)
return auth_token, auth_token_signature
def testEncrypt1(self):
for test in self._testData:
# Build the key
key = RSA.importKey(test[0])
# RNG that takes its random numbers from a pool given
# at initialization
class randGen:
def __init__(self, data):
self.data = data
self.idx = 0
def __call__(self, N):
r = self.data[self.idx:N]
self.idx += N
return r
# The real test
key._randfunc = randGen(t2b(test[3]))
cipher = PKCS.new(key)
ct = cipher.encrypt(b(test[1]))
self.assertEqual(ct, t2b(test[2]))
def testSign1(self):
for i in range(len(self._testData)):
row = self._testData[i]
# Build the key
if isStr(row[0]):
key = RSA.importKey(row[0])
else:
comps = [ long(rws(row[0][x]),16) for x in ('n','e','d') ]
key = RSA.construct(comps)
h = row[3].new()
# Data to sign can either be in hex form or not
try:
h.update(t2b(row[1]))
except:
h.update(b(row[1]))
# The real test
signer = PKCS.new(key)
self.failUnless(signer.can_sign())
s = signer.sign(h)
self.assertEqual(s, t2b(row[2]))
def testVerify1(self):
for i in range(len(self._testData)):
row = self._testData[i]
# Build the key
if isStr(row[0]):
key = RSA.importKey(row[0]).publickey()
else:
comps = [ long(rws(row[0][x]),16) for x in ('n','e') ]
key = RSA.construct(comps)
h = row[3].new()
# Data to sign can either be in hex form or not
try:
h.update(t2b(row[1]))
except:
h.update(b(row[1]))
# The real test
verifier = PKCS.new(key)
self.failIf(verifier.can_sign())
result = verifier.verify(h, t2b(row[2]))
self.failUnless(result)
def from_string(key_pem, is_x509_cert):
"""Construct a Verified instance from a string.
Args:
key_pem: string, public key in PEM format.
is_x509_cert: bool, True if key_pem is an X509 cert, otherwise it is
expected to be an RSA key in PEM format.
Returns:
Verifier instance.
"""
if is_x509_cert:
if isinstance(key_pem, six.text_type):
key_pem = key_pem.encode('ascii')
pemLines = key_pem.replace(b' ', b'').split()
certDer = _urlsafe_b64decode(b''.join(pemLines[1:-1]))
certSeq = DerSequence()
certSeq.decode(certDer)
tbsSeq = DerSequence()
tbsSeq.decode(certSeq[0])
pubkey = RSA.importKey(tbsSeq[6])
else:
pubkey = RSA.importKey(key_pem)
return PyCryptoVerifier(pubkey)
def from_string(key, password='notasecret'):
"""Construct a Signer instance from a string.
Args:
key: string, private key in PEM format.
password: string, password for private key file. Unused for PEM files.
Returns:
Signer instance.
Raises:
NotImplementedError if they key isn't in PEM format.
"""
parsed_pem_key = _parse_pem_key(key)
if parsed_pem_key:
pkey = RSA.importKey(parsed_pem_key)
else:
raise NotImplementedError(
'PKCS12 format is not supported by the PyCrypto library. '
'Try converting to a "PEM" '
'(openssl pkcs12 -in xxxxx.p12 -nodes -nocerts > privatekey.pem) '
'or using PyOpenSSL if native code is an option.')
return PyCryptoSigner(pkey)
def from_string(key_pem, is_x509_cert):
"""Construct a Verified instance from a string.
Args:
key_pem: string, public key in PEM format.
is_x509_cert: bool, True if key_pem is an X509 cert, otherwise it is
expected to be an RSA key in PEM format.
Returns:
Verifier instance.
"""
if is_x509_cert:
if isinstance(key_pem, six.text_type):
key_pem = key_pem.encode('ascii')
pemLines = key_pem.replace(b' ', b'').split()
certDer = _urlsafe_b64decode(b''.join(pemLines[1:-1]))
certSeq = DerSequence()
certSeq.decode(certDer)
tbsSeq = DerSequence()
tbsSeq.decode(certSeq[0])
pubkey = RSA.importKey(tbsSeq[6])
else:
pubkey = RSA.importKey(key_pem)
return PyCryptoVerifier(pubkey)
def from_string(key, password='notasecret'):
"""Construct a Signer instance from a string.
Args:
key: string, private key in PEM format.
password: string, password for private key file. Unused for PEM files.
Returns:
Signer instance.
Raises:
NotImplementedError if they key isn't in PEM format.
"""
parsed_pem_key = _parse_pem_key(key)
if parsed_pem_key:
pkey = RSA.importKey(parsed_pem_key)
else:
raise NotImplementedError(
'PKCS12 format is not supported by the PyCrypto library. '
'Try converting to a "PEM" '
'(openssl pkcs12 -in xxxxx.p12 -nodes -nocerts > privatekey.pem) '
'or using PyOpenSSL if native code is an option.')
return PyCryptoSigner(pkey)
def from_string(key_pem, is_x509_cert):
"""Construct a Verified instance from a string.
Args:
key_pem: string, public key in PEM format.
is_x509_cert: bool, True if key_pem is an X509 cert, otherwise it
is expected to be an RSA key in PEM format.
Returns:
Verifier instance.
"""
if is_x509_cert:
key_pem = _helpers._to_bytes(key_pem)
pemLines = key_pem.replace(b' ', b'').split()
certDer = _helpers._urlsafe_b64decode(b''.join(pemLines[1:-1]))
certSeq = DerSequence()
certSeq.decode(certDer)
tbsSeq = DerSequence()
tbsSeq.decode(certSeq[0])
pubkey = RSA.importKey(tbsSeq[6])
else:
pubkey = RSA.importKey(key_pem)
return PyCryptoVerifier(pubkey)
def from_string(key, password='notasecret'):
"""Construct a Signer instance from a string.
Args:
key: string, private key in PEM format.
password: string, password for private key file. Unused for PEM
files.
Returns:
Signer instance.
Raises:
NotImplementedError if the key isn't in PEM format.
"""
parsed_pem_key = _helpers._parse_pem_key(_helpers._to_bytes(key))
if parsed_pem_key:
pkey = RSA.importKey(parsed_pem_key)
else:
raise NotImplementedError(
'No key in PEM format was detected. This implementation '
'can only use the PyCrypto library for keys in PEM '
'format.')
return PyCryptoSigner(pkey)
def testEncrypt1(self):
for test in self._testData:
# Build the key
key = RSA.importKey(test[0])
# RNG that takes its random numbers from a pool given
# at initialization
class randGen:
def __init__(self, data):
self.data = data
self.idx = 0
def __call__(self, N):
r = self.data[self.idx:N]
self.idx += N
return r
# The real test
key._randfunc = randGen(t2b(test[3]))
cipher = PKCS.new(key)
ct = cipher.encrypt(b(test[1]))
self.assertEqual(ct, t2b(test[2]))
def testSign1(self):
for i in range(len(self._testData)):
row = self._testData[i]
# Build the key
if isStr(row[0]):
key = RSA.importKey(row[0])
else:
comps = [ long(rws(row[0][x]),16) for x in ('n','e','d') ]
key = RSA.construct(comps)
h = row[3].new()
# Data to sign can either be in hex form or not
try:
h.update(t2b(row[1]))
except:
h.update(b(row[1]))
# The real test
signer = PKCS.new(key)
self.failUnless(signer.can_sign())
s = signer.sign(h)
self.assertEqual(s, t2b(row[2]))
def testVerify1(self):
for i in range(len(self._testData)):
row = self._testData[i]
# Build the key
if isStr(row[0]):
key = RSA.importKey(row[0]).publickey()
else:
comps = [ long(rws(row[0][x]),16) for x in ('n','e') ]
key = RSA.construct(comps)
h = row[3].new()
# Data to sign can either be in hex form or not
try:
h.update(t2b(row[1]))
except:
h.update(b(row[1]))
# The real test
verifier = PKCS.new(key)
self.failIf(verifier.can_sign())
result = verifier.verify(h, t2b(row[2]))
self.failUnless(result)