java类org.opencv.core.Core.MinMaxLocResult的实例源码

CvTemplateMatcher.java 文件源码 项目:FlashLib 阅读 39 收藏 0 点赞 0 评论 0
public MatchResult match(Mat scene, Mat templ, Method method, Mat img) {

    int result_cols = scene.cols() - templ.cols() + 1;
    int result_rows = scene.rows() - templ.rows() + 1;
    Mat result = new Mat(result_rows, result_cols, CV_32FC1);
    Imgproc.matchTemplate(scene, templ, result, method.ordinal());
    //Core.normalize(result, result, 0, 1, 32,-1,new Mat());

    MinMaxLocResult mmr = Core.minMaxLoc(result);


    Point matchLoc;
    double maxVal;
    if (method.ordinal() == Imgproc.TM_SQDIFF
            || method.ordinal() == Imgproc.TM_SQDIFF_NORMED) {

        matchLoc = mmr.minLoc;
        maxVal = mmr.minVal;
    }
    else {
        matchLoc = mmr.maxLoc;
        maxVal = mmr.maxVal;
    }

    MatchResult currResult = new MatchResult(matchLoc.x +(templ.cols()/2),matchLoc.y +(templ.rows()/2),0,maxVal);
    return currResult;
}
ImageFinder.java 文件源码 项目:opentest 阅读 23 收藏 0 点赞 0 评论 0
private boolean minMaxLocResultIsValid(MinMaxLocResult minMaxLocRes) {
    if (minMaxLocRes.minVal == 1
            && minMaxLocRes.maxVal == 1
            && minMaxLocRes.maxLoc.x == 0
            && minMaxLocRes.maxLoc.y == 0
            && minMaxLocRes.minLoc.x == 0
            && minMaxLocRes.minLoc.y == 0) {

        return false;
    } else {
        return true;
    }
}
ImageFinder.java 文件源码 项目:opentest 阅读 24 收藏 0 点赞 0 评论 0
private ImageFinderResult findImage(Mat sourceMat, Mat templateMat, double desiredAccuracy) {
    if (sourceMat.width() < templateMat.width() || sourceMat.height() < templateMat.height()) {
        throw new UnsupportedOperationException("The template image is larger than the source image. Ensure that the width and/or height of the image you are trying to find do not exceed the dimensions of the source image.");
    }

    Mat result = new Mat(sourceMat.rows() - templateMat.rows() + 1, sourceMat.rows() - templateMat.rows() + 1, CvType.CV_32FC1);
    int intMatchingMethod;

    switch (this.matchingMethod) {
        case MM_CORELLATION_COEFF:
            intMatchingMethod = Imgproc.TM_CCOEFF_NORMED;
            break;
        case MM_CROSS_CORELLATION:
            intMatchingMethod = Imgproc.TM_CCORR_NORMED;
            break;
        default:
            intMatchingMethod = Imgproc.TM_SQDIFF_NORMED;
    }

    Imgproc.matchTemplate(sourceMat, templateMat, result, intMatchingMethod);
    MinMaxLocResult minMaxLocRes = Core.minMaxLoc(result);

    double accuracy = 0;
    Point location = null;

    if (this.matchingMethod == MatchingMethod.MM_SQUARE_DIFFERENCE) {
        accuracy = 1 - minMaxLocRes.minVal;
        location = minMaxLocRes.minLoc;
    } else {
        accuracy = minMaxLocRes.maxVal;
        location = minMaxLocRes.maxLoc;
    }

    if (accuracy < desiredAccuracy) {
        throw new ImageNotFoundException(
                String.format(
                        "Failed to find template image in the source image. The accuracy was %.2f and the desired accuracy was %.2f",
                        accuracy,
                        desiredAccuracy),
                new Rectangle((int) location.x, (int) location.y, templateMat.width(), templateMat.height()),
                accuracy);
    }

    if (!minMaxLocResultIsValid(minMaxLocRes)) {
        throw new ImageNotFoundException(
                "Image find result (MinMaxLocResult) was invalid. This usually happens when the source image is covered in one solid color.",
                null,
                null);
    }

    Rectangle foundRect = new Rectangle(
            (int) location.x,
            (int) location.y,
            templateMat.width(),
            templateMat.height());

    return new ImageFinderResult(foundRect, accuracy);
}
CardValidationActivity.java 文件源码 项目:Pixtern-Library 阅读 25 收藏 0 点赞 0 评论 0
/**
 * Checks if the pattern can be found in the given area of interest and sets up feedback.
 * @param match_method Match Methods supported by OpenCV.
 * @param res ID of the resource pattern in the res directory.
 * @param resName Name of the resource to be returned.
 * @param thresh Threshold the best detection has to pass in order to be a successful detection.
 */
public void templateMatching(int match_method, int res, String resName, double thresh) {
    // Pattern Matching
    Point matchLocCode; double matchValCode;
    Log.i("HERE", "" + resName);
    Rect roiCodeArea = new Rect(new Point(showBit.cols() * card.getPattern(resName).getTl().x,showBit.rows() * card.getPattern(resName).getTl().y), new Point(showBit.cols() * card.getPattern(resName).getBr().x, showBit.rows() * card.getPattern(resName).getBr().y));
    Mat cropedCodeArea = showBit.submat(roiCodeArea); 
    Bitmap bmCode = BitmapFactory.decodeResource(getResources(), res);
    Mat cropedCode = new Mat ( bmCode.getHeight(), bmCode.getWidth(), CvType.CV_8U, new Scalar(4));
    Utils.bitmapToMat(bmCode, cropedCode);

    int result_cols_code = cropedCodeArea.cols() - cropedCode.cols() + 1;
    int result_rows_code = cropedCodeArea.rows() - cropedCode.rows() + 1;
    Mat resultCode = new Mat(result_rows_code, result_cols_code, CvType.CV_32FC1);

    Imgproc.matchTemplate(cropedCodeArea, cropedCode, resultCode, match_method);
    MinMaxLocResult mmrCode = Core.minMaxLoc(resultCode);

    if (match_method == Imgproc.TM_SQDIFF || match_method == Imgproc.TM_SQDIFF_NORMED) {
        matchLocCode = mmrCode.minLoc;
        matchValCode = mmrCode.minVal;
    } else {
        matchLocCode = mmrCode.maxLoc;
        matchValCode = mmrCode.maxVal;
    }
    Log.w("matchValCode", "" + matchValCode);
    // Pattern passes Detection
    if(matchValCode >= thresh) {
        // If detecting card and pattern passes: get the card that pattern belongs to.
        if(cardType.equals("-DETECT-")) {
            cardType = getFoundCard(resName);
            runOnUiThread(new Runnable() {
                @Override
                public void run() {
                    Toast.makeText(
                            CardValidationActivity.this,
                            "Card detected: " + cardType,
                            Toast.LENGTH_LONG
                            ).show();
                }
            });
        }
        else {
            Core.rectangle( cropedCodeArea, matchLocCode, new Point( matchLocCode.x + cropedCode.cols() , matchLocCode.y + cropedCode.rows() ), new Scalar(0, 255, 0, 255), 4 );
            theText.put("Pattern: " + resName, "PASSED");
        }
    }
    else {
        theText.put("Pattern: " + resName, "FAILED");
        failureCount++;
    }
}
OpenCVMatcher.java 文件源码 项目:visual-scripting 阅读 26 收藏 0 点赞 0 评论 0
public SingleScaleMatch(double fingerprintMatch, MinMaxLocResult minMaxLocResult, Rectangle.Int result) {
    this.fingerprintMatch = fingerprintMatch;
    this.minMaxLocResult = minMaxLocResult;
    this.result = result;
}
OpenCVMatcher.java 文件源码 项目:visual-scripting 阅读 27 收藏 0 点赞 0 评论 0
private static ScanMatch findMatch(Mat searchImageMat, Mat templateMat, double templateStdDev, double scale,
        Image.Int searchImageScaled, BigDecimal s) {        

    double templateScale = s.doubleValue() * scale;
    int w = (int) Math.round(templateMat.width() * templateScale);
    int h = (int) Math.round(templateMat.height() * templateScale);

    // early exit - template is bigger than search image
    if (templateMat.cols() * templateScale >= searchImageMat.cols() || templateMat.rows() * templateScale >= searchImageMat.rows()) {
        return null;
    }

    if (isTemplateTooSmall(w, h, s)) {
        return null;
    }           

    // scale
    Mat scaledTemplateMat = new MatOfFloat();
    resize(templateMat, scaledTemplateMat, new Size(w, h), 0, 0, CV_INTER_AREA);

    // normalized cross-corr
    Mat resultMatrix = new MatOfFloat();
    matchTemplate(searchImageMat, scaledTemplateMat, resultMatrix, TM_CCORR_NORMED);            
    MinMaxLocResult minMaxResult = minMaxLoc(resultMatrix);         

    // compute fingerprint for scaled template
    Image.Int templateForFingerprint = ImageUtil.Convert.toImage(OpenCV.matToBufferedImage(scaledTemplateMat));
    ImageFingerprint templateFingerprint = new ImageFingerprint(ImageUtil.toSquare(templateForFingerprint), 0xf2, 0xf1, 0xf0, FINGERPRINT_SIZE);

    // if template has low contrast bump it up
    if (templateStdDev < STDDEV_THRESHOLD) {

        Image.Int contrastedImage = ImageUtil.Convert.toImageInt(Contrast.autoContrast(ImageUtil.Convert.toImageByte(templateForFingerprint)));
        templateFingerprint = new ImageFingerprint(ImageUtil.toSquare(contrastedImage), 0xf2, 0xf1, 0xf0, FINGERPRINT_SIZE);
    }

    // cut the possible area from the image and get fingerprint probability for it      
    Rectangle.Int resultRectangle = new Rectangle.Int((int) minMaxResult.maxLoc.x, (int) minMaxResult.maxLoc.y, w, h);
    SingleScaleMatch singleScaleMatch = getMatchForRectangle(searchImageScaled, templateFingerprint, templateStdDev, minMaxResult, resultRectangle);

    // free
    resultMatrix.release();

    return new ScanMatch(singleScaleMatch.fingerprintMatch, scaleRectangle(singleScaleMatch.result, 1 / scale), s);
}
OpenCVMatcher.java 文件源码 项目:visual-scripting 阅读 38 收藏 0 点赞 0 评论 0
private static SingleScaleMatch getMatchForRectangle(Image.Int searchImage, ImageFingerprint templateFingerprint,
        double templateStdDev, MinMaxLocResult result, Rectangle.Int resultRectangle) {
    Image.Int crop = ImageUtil.Cut.crop(searchImage, resultRectangle);

    // also increase contrast for crop of search image
    Image.Int contrast = applyContrast(crop, templateStdDev < STDDEV_THRESHOLD);
    ImageFingerprint resultFingerprint = new ImageFingerprint(ImageUtil.toSquare(contrast), 0xf2, 0xf1, 0xf0, FINGERPRINT_SIZE);        

    double stddev1 = stddev(templateFingerprint);
    double stddev2 = stddev(resultFingerprint);
    double stddevMatch = Math.min(stddev1, stddev2) / Math.max(stddev1, stddev2);


    double fingerprintProbability = fingerprintMatch(templateFingerprint, resultFingerprint);           

    double matchProbability = stddevMatch > 0.8 ? fingerprintProbability : fingerprintProbability * stddevMatch;        

    return new SingleScaleMatch(matchProbability, result, resultRectangle);
}
OpenCVAmplitudeRescaler.java 文件源码 项目:rastertheque 阅读 20 收藏 0 点赞 0 评论 0
@Override
    public void execute(Raster raster, Map<Key, Serializable> params,Hints hints, ProgressListener listener) {


        double[] minMax = null;
        if(params != null){
            if(params.containsKey(KEY_MINMAX)){
                 minMax = (double[]) params.get(KEY_MINMAX);                                    
            }
        }

        final int raster_width  = raster.getDimension().width();
        final int raster_height = raster.getDimension().height();

        final int pixelAmount = raster_width * raster_height;

        if(minMax == null){
            final Mat srcMat = matAccordingToDatatype(
                    raster.getBands().get(0).datatype(),
                    raster.getData(),
                    raster_width,
                    raster_height);

            MinMaxLocResult result = Core.minMaxLoc(srcMat);
            minMax = new double[]{result.minVal, result.maxVal};
        }

        int[] pixels = new int[pixelAmount];

        final ByteBufferReader reader = new ByteBufferReader(raster.getData().array(), ByteOrder.nativeOrder());

//      Log.d(OpenCVAmplitudeRescaler.class.getSimpleName(), "rawdata min "+minMax[0] +" max "+minMax[1]);


        for (int i = 0; i < pixelAmount; i++) {

            double d = ByteBufferReaderUtil.getValue(reader, raster.getBands().get(0).datatype());

            pixels[i] = pixelValueForGrayScale(d, minMax[0], minMax[1]);

        }

        ByteBuffer buffer = ByteBuffer.allocate(pixels.length * 4);

        buffer.asIntBuffer().put(pixels);

        raster.setData(buffer);
    }


问题


面经


文章

微信
公众号

扫码关注公众号