@Override
public Mat render(CameraBridgeViewBase.CvCameraViewFrame inputFrame) {
Mat undistortedFrame = new Mat(inputFrame.rgba().size(), inputFrame.rgba().type());
Imgproc.undistort(inputFrame.rgba(), undistortedFrame,
mCalibrator.getCameraMatrix(), mCalibrator.getDistortionCoefficients());
Mat comparisonFrame = inputFrame.rgba();
undistortedFrame.colRange(new Range(0, mWidth / 2)).copyTo(comparisonFrame.colRange(new Range(mWidth / 2, mWidth)));
List<MatOfPoint> border = new ArrayList<MatOfPoint>();
final int shift = (int)(mWidth * 0.005);
border.add(new MatOfPoint(new Point(mWidth / 2 - shift, 0), new Point(mWidth / 2 + shift, 0),
new Point(mWidth / 2 + shift, mHeight), new Point(mWidth / 2 - shift, mHeight)));
Imgproc.fillPoly(comparisonFrame, border, new Scalar(255, 255, 255));
Imgproc.putText(comparisonFrame, mResources.getString(R.string.original), new Point(mWidth * 0.1, mHeight * 0.1),
Core.FONT_HERSHEY_SIMPLEX, 1.0, new Scalar(255, 255, 0));
Imgproc.putText(comparisonFrame, mResources.getString(R.string.undistorted), new Point(mWidth * 0.6, mHeight * 0.1),
Core.FONT_HERSHEY_SIMPLEX, 1.0, new Scalar(255, 255, 0));
return comparisonFrame;
}
java类org.opencv.core.Range的实例源码
ComparisonFrameRender.java 文件源码
项目:OpenCV-AndroidSamples-master
阅读 21
收藏 0
点赞 0
评论 0
ComparisonFrameRender.java 文件源码
项目:Aruco-Marker-Tracking-Android
阅读 17
收藏 0
点赞 0
评论 0
@Override
public Mat render(CameraBridgeViewBase.CvCameraViewFrame inputFrame) {
Mat undistortedFrame = new Mat(inputFrame.rgba().size(), inputFrame.rgba().type());
Imgproc.undistort(inputFrame.rgba(), undistortedFrame,
mCalibrator.getCameraMatrix(), mCalibrator.getDistortionCoefficients());
Mat comparisonFrame = inputFrame.rgba();
undistortedFrame.colRange(new Range(0, mWidth / 2)).copyTo(comparisonFrame.colRange(new Range(mWidth / 2, mWidth)));
List<MatOfPoint> border = new ArrayList<MatOfPoint>();
final int shift = (int)(mWidth * 0.005);
border.add(new MatOfPoint(new Point(mWidth / 2 - shift, 0), new Point(mWidth / 2 + shift, 0),
new Point(mWidth / 2 + shift, mHeight), new Point(mWidth / 2 - shift, mHeight)));
Core.fillPoly(comparisonFrame, border, new Scalar(255, 255, 255));
Core.putText(comparisonFrame, mResources.getString(R.string.original), new Point(mWidth * 0.1, mHeight * 0.1),
Core.FONT_HERSHEY_SIMPLEX, 1.0, new Scalar(255, 255, 0));
Core.putText(comparisonFrame, mResources.getString(R.string.undistorted), new Point(mWidth * 0.6, mHeight * 0.1),
Core.FONT_HERSHEY_SIMPLEX, 1.0, new Scalar(255, 255, 0));
return comparisonFrame;
}
ComparisonFrameRender.java 文件源码
项目:OpenCV-AndroidSamples
阅读 19
收藏 0
点赞 0
评论 0
@Override
public Mat render(CameraBridgeViewBase.CvCameraViewFrame inputFrame) {
Mat undistortedFrame = new Mat(inputFrame.rgba().size(), inputFrame.rgba().type());
Imgproc.undistort(inputFrame.rgba(), undistortedFrame,
mCalibrator.getCameraMatrix(), mCalibrator.getDistortionCoefficients());
Mat comparisonFrame = inputFrame.rgba();
undistortedFrame.colRange(new Range(0, mWidth / 2)).copyTo(comparisonFrame.colRange(new Range(mWidth / 2, mWidth)));
List<MatOfPoint> border = new ArrayList<MatOfPoint>();
final int shift = (int)(mWidth * 0.005);
border.add(new MatOfPoint(new Point(mWidth / 2 - shift, 0), new Point(mWidth / 2 + shift, 0),
new Point(mWidth / 2 + shift, mHeight), new Point(mWidth / 2 - shift, mHeight)));
Imgproc.fillPoly(comparisonFrame, border, new Scalar(255, 255, 255));
Imgproc.putText(comparisonFrame, mResources.getString(R.string.original), new Point(mWidth * 0.1, mHeight * 0.1),
Core.FONT_HERSHEY_SIMPLEX, 1.0, new Scalar(255, 255, 0));
Imgproc.putText(comparisonFrame, mResources.getString(R.string.undistorted), new Point(mWidth * 0.6, mHeight * 0.1),
Core.FONT_HERSHEY_SIMPLEX, 1.0, new Scalar(255, 255, 0));
return comparisonFrame;
}
BackProjectionActivity.java 文件源码
项目:OpenCV-BackProjection
阅读 17
收藏 0
点赞 0
评论 0
public void onCameraViewStarted(int width, int height) {
mRgba = new Mat(height, width, CvType.CV_8UC3);
mHSV = new Mat();
mIntermediateMat = new Mat();
mGray = new Mat(height, width, CvType.CV_8UC1);
mask2 = Mat.zeros( mRgba.rows() + 2, mRgba.cols() + 2, CvType.CV_8UC1 );
newVal = new Scalar( 120, 120, 120 );
loDiff = new Scalar( lo, lo, lo );
upDiff = new Scalar( up, up, up );
rowRange = new Range( 1, mask2.rows() - 1 );
colRange = new Range( 1, mask2.cols() - 1 );
mBitmap = Bitmap.createBitmap(width, height, Bitmap.Config.ARGB_8888);
}
ImageProcessing.java 文件源码
项目:fingerblox
阅读 45
收藏 0
点赞 0
评论 0
private Mat cropFingerprint(Mat src) {
int rowStart = (int) (CameraOverlayView.PADDING * src.rows());
int rowEnd = (int) ((1 - CameraOverlayView.PADDING) * src.rows());
int colStart = (int) (CameraOverlayView.PADDING * src.cols());
int colEnd = (int) ((1 - CameraOverlayView.PADDING) * src.cols());
Range rowRange = new Range(rowStart, rowEnd);
Range colRange = new Range(colStart, colEnd);
return src.submat(rowRange, colRange);
}
ImgprocessUtils.java 文件源码
项目:classchecks
阅读 25
收藏 0
点赞 0
评论 0
/**
* 其主要思路为:
1、求取源图I的平均灰度,并记录rows和cols;
2、按照一定大小,分为N*M个方块,求出每块的平均值,得到子块的亮度矩阵D;
3、用矩阵D的每个元素减去源图的平均灰度,得到子块的亮度差值矩阵E;
4、用双立方差值法,将矩阵E差值成与源图一样大小的亮度分布矩阵R;
5、得到矫正后的图像result=I-R;
* @Title: unevenLightCompensate
* @Description: 光线补偿
* @param image
* @param blockSize
* void
* @throws
*/
public static void unevenLightCompensate(Mat image, int blockSize) {
if(image.channels() == 3) {
Imgproc.cvtColor(image, image, 7);
}
double average = Core.mean(image).val[0];
Scalar scalar = new Scalar(average);
int rowsNew = (int) Math.ceil((double)image.rows() / (double)blockSize);
int colsNew = (int) Math.ceil((double)image.cols() / (double)blockSize);
Mat blockImage = new Mat();
blockImage = Mat.zeros(rowsNew, colsNew, CvType.CV_32FC1);
for(int i = 0; i < rowsNew; i ++) {
for(int j = 0; j < colsNew; j ++) {
int rowmin = i * blockSize;
int rowmax = (i + 1) * blockSize;
if(rowmax > image.rows()) rowmax = image.rows();
int colmin = j * blockSize;
int colmax = (j +1) * blockSize;
if(colmax > image.cols()) colmax = image.cols();
Range rangeRow = new Range(rowmin, rowmax);
Range rangeCol = new Range(colmin, colmax);
Mat imageROI = new Mat(image, rangeRow, rangeCol);
double temaver = Core.mean(imageROI).val[0];
blockImage.put(i, j, temaver);
}
}
Core.subtract(blockImage, scalar, blockImage);
Mat blockImage2 = new Mat();
int INTER_CUBIC = 2;
Imgproc.resize(blockImage, blockImage2, image.size(), 0, 0, INTER_CUBIC);
Mat image2 = new Mat();
image.convertTo(image2, CvType.CV_32FC1);
Mat dst = new Mat();
Core.subtract(image2, blockImage2, dst);
dst.convertTo(image, CvType.CV_8UC1);
}
CVProcessor.java 文件源码
项目:CVScanner
阅读 17
收藏 0
点赞 0
评论 0
public static Rect detectBorder(Mat original){
Mat src = original.clone();
Log.d(TAG, "1 original: " + src.toString());
Imgproc.GaussianBlur(src, src, new Size(3, 3), 0);
Log.d(TAG, "2.1 --> Gaussian blur done\n blur: " + src.toString());
Imgproc.cvtColor(src, src, Imgproc.COLOR_RGBA2GRAY);
Log.d(TAG, "2.2 --> Grayscaling done\n gray: " + src.toString());
Mat sobelX = new Mat();
Mat sobelY = new Mat();
Imgproc.Sobel(src, sobelX, CvType.CV_32FC1, 2, 0, 5, 1, 0);
Log.d(TAG, "3.1 --> Sobel done.\n X: " + sobelX.toString());
Imgproc.Sobel(src, sobelY, CvType.CV_32FC1, 0, 2, 5, 1, 0);
Log.d(TAG, "3.2 --> Sobel done.\n Y: " + sobelY.toString());
Mat sum_img = new Mat();
Core.addWeighted(sobelX, 0.5, sobelY, 0.5, 0.5, sum_img);
//Core.add(sobelX, sobelY, sum_img);
Log.d(TAG, "4 --> Addition done. sum: " + sum_img.toString());
sobelX.release();
sobelY.release();
Mat gray = new Mat();
Core.normalize(sum_img, gray, 0, 255, Core.NORM_MINMAX, CvType.CV_8UC1);
Log.d(TAG, "5 --> Normalization done. gray: " + gray.toString());
sum_img.release();
Mat row_proj = new Mat();
Mat col_proj = new Mat();
Core.reduce(gray, row_proj, 1, Core.REDUCE_AVG, CvType.CV_8UC1);
Log.d(TAG, "6.1 --> Reduce done. row: " + row_proj.toString());
Core.reduce(gray, col_proj, 0, Core.REDUCE_AVG, CvType.CV_8UC1);
Log.d(TAG, "6.2 --> Reduce done. col: " + col_proj.toString());
gray.release();
Imgproc.Sobel(row_proj, row_proj, CvType.CV_8UC1, 0, 2);
Log.d(TAG, "7.1 --> Sobel done. row: " + row_proj.toString());
Imgproc.Sobel(col_proj, col_proj, CvType.CV_8UC1, 2, 0);
Log.d(TAG, "7.2 --> Sobel done. col: " + col_proj.toString());
Rect result = new Rect();
int half_pos = (int) (row_proj.total()/2);
Mat row_sub = new Mat(row_proj, new Range(0, half_pos), new Range(0, 1));
Log.d(TAG, "8.1 --> Copy sub matrix done. row: " + row_sub.toString());
result.y = (int) Core.minMaxLoc(row_sub).maxLoc.y;
Log.d(TAG, "8.2 --> Minmax done. Y: " + result.y);
row_sub.release();
Mat row_sub2 = new Mat(row_proj, new Range(half_pos, (int) row_proj.total()), new Range(0, 1));
Log.d(TAG, "8.3 --> Copy sub matrix done. row: " + row_sub2.toString());
result.height = (int) (Core.minMaxLoc(row_sub2).maxLoc.y + half_pos - result.y);
Log.d(TAG, "8.4 --> Minmax done. Height: " + result.height);
row_sub2.release();
half_pos = (int) (col_proj.total()/2);
Mat col_sub = new Mat(col_proj, new Range(0, 1), new Range(0, half_pos));
Log.d(TAG, "9.1 --> Copy sub matrix done. col: " + col_sub.toString());
result.x = (int) Core.minMaxLoc(col_sub).maxLoc.x;
Log.d(TAG, "9.2 --> Minmax done. X: " + result.x);
col_sub.release();
Mat col_sub2 = new Mat(col_proj, new Range(0, 1), new Range(half_pos, (int) col_proj.total()));
Log.d(TAG, "9.3 --> Copy sub matrix done. col: " + col_sub2.toString());
result.width = (int) (Core.minMaxLoc(col_sub2).maxLoc.x + half_pos - result.x);
Log.d(TAG, "9.4 --> Minmax done. Width: " + result.width);
col_sub2.release();
row_proj.release();
col_proj.release();
src.release();
return result;
}
CvGBTrees.java 文件源码
项目:TinyPlanetMaker
阅读 22
收藏 0
点赞 0
评论 0
/**
* <p>Predicts a response for an input sample.</p>
*
* <p>The method predicts the response corresponding to the given sample (see
* "Predicting with GBT").
* The result is either the class label or the estimated function value. The
* "CvGBTrees.predict" method enables using the parallel version of the GBT
* model prediction if the OpenCV is built with the TBB library. In this case,
* predictions of single trees are computed in a parallel fashion.</p>
*
* @param sample Input feature vector that has the same format as every training
* set element. If not all the variables were actually used during training,
* <code>sample</code> contains forged values at the appropriate places.
* @param missing Missing values mask, which is a dimensional matrix of the same
* size as <code>sample</code> having the <code>CV_8U</code> type.
* <code>1</code> corresponds to the missing value in the same position in the
* <code>sample</code> vector. If there are no missing values in the feature
* vector, an empty matrix can be passed instead of the missing mask.
* @param slice Parameter defining the part of the ensemble used for prediction.
* <p>If <code>slice = Range.all()</code>, all trees are used. Use this parameter
* to get predictions of the GBT models with different ensemble sizes learning
* only one model.</p>
* @param k Number of tree ensembles built in case of the classification problem
* (see "Training GBT"). Use this parameter to change the output to sum of the
* trees' predictions in the <code>k</code>-th ensemble only. To get the total
* GBT model prediction, <code>k</code> value must be -1. For regression
* problems, <code>k</code> is also equal to -1.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/gradient_boosted_trees.html#cvgbtrees-predict">org.opencv.ml.CvGBTrees.predict</a>
*/
public float predict(Mat sample, Mat missing, Range slice, int k)
{
float retVal = predict_0(nativeObj, sample.nativeObj, missing.nativeObj, slice.start, slice.end, k);
return retVal;
}
CvBoost.java 文件源码
项目:TinyPlanetMaker
阅读 20
收藏 0
点赞 0
评论 0
/**
* <p>Predicts a response for an input sample.</p>
*
* <p>The method runs the sample through the trees in the ensemble and returns the
* output class label based on the weighted voting.</p>
*
* @param sample Input sample.
* @param missing Optional mask of missing measurements. To handle missing
* measurements, the weak classifiers must include surrogate splits (see
* <code>CvDTreeParams.use_surrogates</code>).
* @param slice Continuous subset of the sequence of weak classifiers to be used
* for prediction. By default, all the weak classifiers are used.
* @param rawMode Normally, it should be set to <code>false</code>.
* @param returnSum If <code>true</code> then return sum of votes instead of the
* class label.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-predict">org.opencv.ml.CvBoost.predict</a>
*/
public float predict(Mat sample, Mat missing, Range slice, boolean rawMode, boolean returnSum)
{
float retVal = predict_0(nativeObj, sample.nativeObj, missing.nativeObj, slice.start, slice.end, rawMode, returnSum);
return retVal;
}
CvBoost.java 文件源码
项目:TinyPlanetMaker
阅读 17
收藏 0
点赞 0
评论 0
/**
* <p>Removes the specified weak classifiers.</p>
*
* <p>The method removes the specified weak classifiers from the sequence.</p>
*
* <p>Note: Do not confuse this method with the pruning of individual decision
* trees, which is currently not supported.</p>
*
* @param slice Continuous subset of the sequence of weak classifiers to be
* removed.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-prune">org.opencv.ml.CvBoost.prune</a>
*/
public void prune(Range slice)
{
prune_0(nativeObj, slice.start, slice.end);
return;
}
CvGBTrees.java 文件源码
项目:android-things-drawbot
阅读 17
收藏 0
点赞 0
评论 0
/**
* <p>Predicts a response for an input sample.</p>
*
* <p>The method predicts the response corresponding to the given sample (see
* "Predicting with GBT").
* The result is either the class label or the estimated function value. The
* "CvGBTrees.predict" method enables using the parallel version of the GBT
* model prediction if the OpenCV is built with the TBB library. In this case,
* predictions of single trees are computed in a parallel fashion.</p>
*
* @param sample Input feature vector that has the same format as every training
* set element. If not all the variables were actually used during training,
* <code>sample</code> contains forged values at the appropriate places.
* @param missing Missing values mask, which is a dimensional matrix of the same
* size as <code>sample</code> having the <code>CV_8U</code> type.
* <code>1</code> corresponds to the missing value in the same position in the
* <code>sample</code> vector. If there are no missing values in the feature
* vector, an empty matrix can be passed instead of the missing mask.
* @param slice Parameter defining the part of the ensemble used for prediction.
* <p>If <code>slice = Range.all()</code>, all trees are used. Use this parameter
* to get predictions of the GBT models with different ensemble sizes learning
* only one model.</p>
* @param k Number of tree ensembles built in case of the classification problem
* (see "Training GBT"). Use this parameter to change the output to sum of the
* trees' predictions in the <code>k</code>-th ensemble only. To get the total
* GBT model prediction, <code>k</code> value must be -1. For regression
* problems, <code>k</code> is also equal to -1.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/gradient_boosted_trees.html#cvgbtrees-predict">org.opencv.ml.CvGBTrees.predict</a>
*/
public float predict(Mat sample, Mat missing, Range slice, int k)
{
float retVal = predict_0(nativeObj, sample.nativeObj, missing.nativeObj, slice.start, slice.end, k);
return retVal;
}
CvBoost.java 文件源码
项目:android-things-drawbot
阅读 21
收藏 0
点赞 0
评论 0
/**
* <p>Predicts a response for an input sample.</p>
*
* <p>The method runs the sample through the trees in the ensemble and returns the
* output class label based on the weighted voting.</p>
*
* @param sample Input sample.
* @param missing Optional mask of missing measurements. To handle missing
* measurements, the weak classifiers must include surrogate splits (see
* <code>CvDTreeParams.use_surrogates</code>).
* @param slice Continuous subset of the sequence of weak classifiers to be used
* for prediction. By default, all the weak classifiers are used.
* @param rawMode Normally, it should be set to <code>false</code>.
* @param returnSum If <code>true</code> then return sum of votes instead of the
* class label.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-predict">org.opencv.ml.CvBoost.predict</a>
*/
public float predict(Mat sample, Mat missing, Range slice, boolean rawMode, boolean returnSum)
{
float retVal = predict_0(nativeObj, sample.nativeObj, missing.nativeObj, slice.start, slice.end, rawMode, returnSum);
return retVal;
}
CvBoost.java 文件源码
项目:android-things-drawbot
阅读 16
收藏 0
点赞 0
评论 0
/**
* <p>Removes the specified weak classifiers.</p>
*
* <p>The method removes the specified weak classifiers from the sequence.</p>
*
* <p>Note: Do not confuse this method with the pruning of individual decision
* trees, which is currently not supported.</p>
*
* @param slice Continuous subset of the sequence of weak classifiers to be
* removed.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-prune">org.opencv.ml.CvBoost.prune</a>
*/
public void prune(Range slice)
{
prune_0(nativeObj, slice.start, slice.end);
return;
}
CvGBTrees.java 文件源码
项目:Android-Crop-Receipt
阅读 20
收藏 0
点赞 0
评论 0
/**
* <p>Predicts a response for an input sample.</p>
*
* <p>The method predicts the response corresponding to the given sample (see
* "Predicting with GBT").
* The result is either the class label or the estimated function value. The
* "CvGBTrees.predict" method enables using the parallel version of the GBT
* model prediction if the OpenCV is built with the TBB library. In this case,
* predictions of single trees are computed in a parallel fashion.</p>
*
* @param sample Input feature vector that has the same format as every training
* set element. If not all the variables were actually used during training,
* <code>sample</code> contains forged values at the appropriate places.
* @param missing Missing values mask, which is a dimensional matrix of the same
* size as <code>sample</code> having the <code>CV_8U</code> type.
* <code>1</code> corresponds to the missing value in the same position in the
* <code>sample</code> vector. If there are no missing values in the feature
* vector, an empty matrix can be passed instead of the missing mask.
* @param slice Parameter defining the part of the ensemble used for prediction.
* <p>If <code>slice = Range.all()</code>, all trees are used. Use this parameter
* to get predictions of the GBT models with different ensemble sizes learning
* only one model.</p>
* @param k Number of tree ensembles built in case of the classification problem
* (see "Training GBT"). Use this parameter to change the output to sum of the
* trees' predictions in the <code>k</code>-th ensemble only. To get the total
* GBT model prediction, <code>k</code> value must be -1. For regression
* problems, <code>k</code> is also equal to -1.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/gradient_boosted_trees.html#cvgbtrees-predict">org.opencv.ml.CvGBTrees.predict</a>
*/
public float predict(Mat sample, Mat missing, Range slice, int k)
{
float retVal = predict_0(nativeObj, sample.nativeObj, missing.nativeObj, slice.start, slice.end, k);
return retVal;
}
CvBoost.java 文件源码
项目:Android-Crop-Receipt
阅读 18
收藏 0
点赞 0
评论 0
/**
* <p>Predicts a response for an input sample.</p>
*
* <p>The method runs the sample through the trees in the ensemble and returns the
* output class label based on the weighted voting.</p>
*
* @param sample Input sample.
* @param missing Optional mask of missing measurements. To handle missing
* measurements, the weak classifiers must include surrogate splits (see
* <code>CvDTreeParams.use_surrogates</code>).
* @param slice Continuous subset of the sequence of weak classifiers to be used
* for prediction. By default, all the weak classifiers are used.
* @param rawMode Normally, it should be set to <code>false</code>.
* @param returnSum If <code>true</code> then return sum of votes instead of the
* class label.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-predict">org.opencv.ml.CvBoost.predict</a>
*/
public float predict(Mat sample, Mat missing, Range slice, boolean rawMode, boolean returnSum)
{
float retVal = predict_0(nativeObj, sample.nativeObj, missing.nativeObj, slice.start, slice.end, rawMode, returnSum);
return retVal;
}
CvBoost.java 文件源码
项目:Android-Crop-Receipt
阅读 18
收藏 0
点赞 0
评论 0
/**
* <p>Removes the specified weak classifiers.</p>
*
* <p>The method removes the specified weak classifiers from the sequence.</p>
*
* <p>Note: Do not confuse this method with the pruning of individual decision
* trees, which is currently not supported.</p>
*
* @param slice Continuous subset of the sequence of weak classifiers to be
* removed.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-prune">org.opencv.ml.CvBoost.prune</a>
*/
public void prune(Range slice)
{
prune_0(nativeObj, slice.start, slice.end);
return;
}
CvGBTrees.java 文件源码
项目:AndroidCameraSudokuSolver
阅读 21
收藏 0
点赞 0
评论 0
/**
* <p>Predicts a response for an input sample.</p>
*
* <p>The method predicts the response corresponding to the given sample (see
* "Predicting with GBT").
* The result is either the class label or the estimated function value. The
* "CvGBTrees.predict" method enables using the parallel version of the GBT
* model prediction if the OpenCV is built with the TBB library. In this case,
* predictions of single trees are computed in a parallel fashion.</p>
*
* @param sample Input feature vector that has the same format as every training
* set element. If not all the variables were actually used during training,
* <code>sample</code> contains forged values at the appropriate places.
* @param missing Missing values mask, which is a dimensional matrix of the same
* size as <code>sample</code> having the <code>CV_8U</code> type.
* <code>1</code> corresponds to the missing value in the same position in the
* <code>sample</code> vector. If there are no missing values in the feature
* vector, an empty matrix can be passed instead of the missing mask.
* @param slice Parameter defining the part of the ensemble used for prediction.
* <p>If <code>slice = Range.all()</code>, all trees are used. Use this parameter
* to get predictions of the GBT models with different ensemble sizes learning
* only one model.</p>
* @param k Number of tree ensembles built in case of the classification problem
* (see "Training GBT"). Use this parameter to change the output to sum of the
* trees' predictions in the <code>k</code>-th ensemble only. To get the total
* GBT model prediction, <code>k</code> value must be -1. For regression
* problems, <code>k</code> is also equal to -1.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/gradient_boosted_trees.html#cvgbtrees-predict">org.opencv.ml.CvGBTrees.predict</a>
*/
public float predict(Mat sample, Mat missing, Range slice, int k)
{
float retVal = predict_0(nativeObj, sample.nativeObj, missing.nativeObj, slice.start, slice.end, k);
return retVal;
}
CvBoost.java 文件源码
项目:AndroidCameraSudokuSolver
阅读 22
收藏 0
点赞 0
评论 0
/**
* <p>Predicts a response for an input sample.</p>
*
* <p>The method runs the sample through the trees in the ensemble and returns the
* output class label based on the weighted voting.</p>
*
* @param sample Input sample.
* @param missing Optional mask of missing measurements. To handle missing
* measurements, the weak classifiers must include surrogate splits (see
* <code>CvDTreeParams.use_surrogates</code>).
* @param slice Continuous subset of the sequence of weak classifiers to be used
* for prediction. By default, all the weak classifiers are used.
* @param rawMode Normally, it should be set to <code>false</code>.
* @param returnSum If <code>true</code> then return sum of votes instead of the
* class label.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-predict">org.opencv.ml.CvBoost.predict</a>
*/
public float predict(Mat sample, Mat missing, Range slice, boolean rawMode, boolean returnSum)
{
float retVal = predict_0(nativeObj, sample.nativeObj, missing.nativeObj, slice.start, slice.end, rawMode, returnSum);
return retVal;
}
CvBoost.java 文件源码
项目:AndroidCameraSudokuSolver
阅读 17
收藏 0
点赞 0
评论 0
/**
* <p>Removes the specified weak classifiers.</p>
*
* <p>The method removes the specified weak classifiers from the sequence.</p>
*
* <p>Note: Do not confuse this method with the pruning of individual decision
* trees, which is currently not supported.</p>
*
* @param slice Continuous subset of the sequence of weak classifiers to be
* removed.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-prune">org.opencv.ml.CvBoost.prune</a>
*/
public void prune(Range slice)
{
prune_0(nativeObj, slice.start, slice.end);
return;
}
CvGBTrees.java 文件源码
项目:OpenCV_Android_Plus
阅读 19
收藏 0
点赞 0
评论 0
/**
* <p>Predicts a response for an input sample.</p>
*
* <p>The method predicts the response corresponding to the given sample (see
* "Predicting with GBT").
* The result is either the class label or the estimated function value. The
* "CvGBTrees.predict" method enables using the parallel version of the GBT
* model prediction if the OpenCV is built with the TBB library. In this case,
* predictions of single trees are computed in a parallel fashion.</p>
*
* @param sample Input feature vector that has the same format as every training
* set element. If not all the variables were actually used during training,
* <code>sample</code> contains forged values at the appropriate places.
* @param missing Missing values mask, which is a dimensional matrix of the same
* size as <code>sample</code> having the <code>CV_8U</code> type.
* <code>1</code> corresponds to the missing value in the same position in the
* <code>sample</code> vector. If there are no missing values in the feature
* vector, an empty matrix can be passed instead of the missing mask.
* @param slice Parameter defining the part of the ensemble used for prediction.
* <p>If <code>slice = Range.all()</code>, all trees are used. Use this parameter
* to get predictions of the GBT models with different ensemble sizes learning
* only one model.</p>
* @param k Number of tree ensembles built in case of the classification problem
* (see "Training GBT"). Use this parameter to change the output to sum of the
* trees' predictions in the <code>k</code>-th ensemble only. To get the total
* GBT model prediction, <code>k</code> value must be -1. For regression
* problems, <code>k</code> is also equal to -1.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/gradient_boosted_trees.html#cvgbtrees-predict">org.opencv.ml.CvGBTrees.predict</a>
*/
public float predict(Mat sample, Mat missing, Range slice, int k)
{
float retVal = predict_0(nativeObj, sample.nativeObj, missing.nativeObj, slice.start, slice.end, k);
return retVal;
}
CvBoost.java 文件源码
项目:OpenCV_Android_Plus
阅读 20
收藏 0
点赞 0
评论 0
/**
* <p>Predicts a response for an input sample.</p>
*
* <p>The method runs the sample through the trees in the ensemble and returns the
* output class label based on the weighted voting.</p>
*
* @param sample Input sample.
* @param missing Optional mask of missing measurements. To handle missing
* measurements, the weak classifiers must include surrogate splits (see
* <code>CvDTreeParams.use_surrogates</code>).
* @param slice Continuous subset of the sequence of weak classifiers to be used
* for prediction. By default, all the weak classifiers are used.
* @param rawMode Normally, it should be set to <code>false</code>.
* @param returnSum If <code>true</code> then return sum of votes instead of the
* class label.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-predict">org.opencv.ml.CvBoost.predict</a>
*/
public float predict(Mat sample, Mat missing, Range slice, boolean rawMode, boolean returnSum)
{
float retVal = predict_0(nativeObj, sample.nativeObj, missing.nativeObj, slice.start, slice.end, rawMode, returnSum);
return retVal;
}
CvBoost.java 文件源码
项目:OpenCV_Android_Plus
阅读 20
收藏 0
点赞 0
评论 0
/**
* <p>Removes the specified weak classifiers.</p>
*
* <p>The method removes the specified weak classifiers from the sequence.</p>
*
* <p>Note: Do not confuse this method with the pruning of individual decision
* trees, which is currently not supported.</p>
*
* @param slice Continuous subset of the sequence of weak classifiers to be
* removed.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-prune">org.opencv.ml.CvBoost.prune</a>
*/
public void prune(Range slice)
{
prune_0(nativeObj, slice.start, slice.end);
return;
}
CvGBTrees.java 文件源码
项目:MemeVision
阅读 21
收藏 0
点赞 0
评论 0
/**
* <p>Predicts a response for an input sample.</p>
*
* <p>The method predicts the response corresponding to the given sample (see
* "Predicting with GBT").
* The result is either the class label or the estimated function value. The
* "CvGBTrees.predict" method enables using the parallel version of the GBT
* model prediction if the OpenCV is built with the TBB library. In this case,
* predictions of single trees are computed in a parallel fashion.</p>
*
* @param sample Input feature vector that has the same format as every training
* set element. If not all the variables were actually used during training,
* <code>sample</code> contains forged values at the appropriate places.
* @param missing Missing values mask, which is a dimensional matrix of the same
* size as <code>sample</code> having the <code>CV_8U</code> type.
* <code>1</code> corresponds to the missing value in the same position in the
* <code>sample</code> vector. If there are no missing values in the feature
* vector, an empty matrix can be passed instead of the missing mask.
* @param slice Parameter defining the part of the ensemble used for prediction.
* <p>If <code>slice = Range.all()</code>, all trees are used. Use this parameter
* to get predictions of the GBT models with different ensemble sizes learning
* only one model.</p>
* @param k Number of tree ensembles built in case of the classification problem
* (see "Training GBT"). Use this parameter to change the output to sum of the
* trees' predictions in the <code>k</code>-th ensemble only. To get the total
* GBT model prediction, <code>k</code> value must be -1. For regression
* problems, <code>k</code> is also equal to -1.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/gradient_boosted_trees.html#cvgbtrees-predict">org.opencv.ml.CvGBTrees.predict</a>
*/
public float predict(Mat sample, Mat missing, Range slice, int k)
{
float retVal = predict_0(nativeObj, sample.nativeObj, missing.nativeObj, slice.start, slice.end, k);
return retVal;
}
CvBoost.java 文件源码
项目:MemeVision
阅读 20
收藏 0
点赞 0
评论 0
/**
* <p>Predicts a response for an input sample.</p>
*
* <p>The method runs the sample through the trees in the ensemble and returns the
* output class label based on the weighted voting.</p>
*
* @param sample Input sample.
* @param missing Optional mask of missing measurements. To handle missing
* measurements, the weak classifiers must include surrogate splits (see
* <code>CvDTreeParams.use_surrogates</code>).
* @param slice Continuous subset of the sequence of weak classifiers to be used
* for prediction. By default, all the weak classifiers are used.
* @param rawMode Normally, it should be set to <code>false</code>.
* @param returnSum If <code>true</code> then return sum of votes instead of the
* class label.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-predict">org.opencv.ml.CvBoost.predict</a>
*/
public float predict(Mat sample, Mat missing, Range slice, boolean rawMode, boolean returnSum)
{
float retVal = predict_0(nativeObj, sample.nativeObj, missing.nativeObj, slice.start, slice.end, rawMode, returnSum);
return retVal;
}
CvBoost.java 文件源码
项目:MemeVision
阅读 20
收藏 0
点赞 0
评论 0
/**
* <p>Removes the specified weak classifiers.</p>
*
* <p>The method removes the specified weak classifiers from the sequence.</p>
*
* <p>Note: Do not confuse this method with the pruning of individual decision
* trees, which is currently not supported.</p>
*
* @param slice Continuous subset of the sequence of weak classifiers to be
* removed.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-prune">org.opencv.ml.CvBoost.prune</a>
*/
public void prune(Range slice)
{
prune_0(nativeObj, slice.start, slice.end);
return;
}
CvGBTrees.java 文件源码
项目:RectangleDetection
阅读 16
收藏 0
点赞 0
评论 0
/**
* <p>Predicts a response for an input sample.</p>
*
* <p>The method predicts the response corresponding to the given sample (see
* "Predicting with GBT").
* The result is either the class label or the estimated function value. The
* "CvGBTrees.predict" method enables using the parallel version of the GBT
* model prediction if the OpenCV is built with the TBB library. In this case,
* predictions of single trees are computed in a parallel fashion.</p>
*
* @param sample Input feature vector that has the same format as every training
* set element. If not all the variables were actually used during training,
* <code>sample</code> contains forged values at the appropriate places.
* @param missing Missing values mask, which is a dimensional matrix of the same
* size as <code>sample</code> having the <code>CV_8U</code> type.
* <code>1</code> corresponds to the missing value in the same position in the
* <code>sample</code> vector. If there are no missing values in the feature
* vector, an empty matrix can be passed instead of the missing mask.
* @param slice Parameter defining the part of the ensemble used for prediction.
* <p>If <code>slice = Range.all()</code>, all trees are used. Use this parameter
* to get predictions of the GBT models with different ensemble sizes learning
* only one model.</p>
* @param k Number of tree ensembles built in case of the classification problem
* (see "Training GBT"). Use this parameter to change the output to sum of the
* trees' predictions in the <code>k</code>-th ensemble only. To get the total
* GBT model prediction, <code>k</code> value must be -1. For regression
* problems, <code>k</code> is also equal to -1.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/gradient_boosted_trees.html#cvgbtrees-predict">org.opencv.ml.CvGBTrees.predict</a>
*/
public float predict(Mat sample, Mat missing, Range slice, int k)
{
float retVal = predict_0(nativeObj, sample.nativeObj, missing.nativeObj, slice.start, slice.end, k);
return retVal;
}
CvBoost.java 文件源码
项目:RectangleDetection
阅读 19
收藏 0
点赞 0
评论 0
/**
* <p>Predicts a response for an input sample.</p>
*
* <p>The method runs the sample through the trees in the ensemble and returns the
* output class label based on the weighted voting.</p>
*
* @param sample Input sample.
* @param missing Optional mask of missing measurements. To handle missing
* measurements, the weak classifiers must include surrogate splits (see
* <code>CvDTreeParams.use_surrogates</code>).
* @param slice Continuous subset of the sequence of weak classifiers to be used
* for prediction. By default, all the weak classifiers are used.
* @param rawMode Normally, it should be set to <code>false</code>.
* @param returnSum If <code>true</code> then return sum of votes instead of the
* class label.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-predict">org.opencv.ml.CvBoost.predict</a>
*/
public float predict(Mat sample, Mat missing, Range slice, boolean rawMode, boolean returnSum)
{
float retVal = predict_0(nativeObj, sample.nativeObj, missing.nativeObj, slice.start, slice.end, rawMode, returnSum);
return retVal;
}
CvBoost.java 文件源码
项目:RectangleDetection
阅读 17
收藏 0
点赞 0
评论 0
/**
* <p>Removes the specified weak classifiers.</p>
*
* <p>The method removes the specified weak classifiers from the sequence.</p>
*
* <p>Note: Do not confuse this method with the pruning of individual decision
* trees, which is currently not supported.</p>
*
* @param slice Continuous subset of the sequence of weak classifiers to be
* removed.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-prune">org.opencv.ml.CvBoost.prune</a>
*/
public void prune(Range slice)
{
prune_0(nativeObj, slice.start, slice.end);
return;
}
CvGBTrees.java 文件源码
项目:cardboardAR-lib
阅读 18
收藏 0
点赞 0
评论 0
/**
* <p>Predicts a response for an input sample.</p>
*
* <p>The method predicts the response corresponding to the given sample (see
* "Predicting with GBT").
* The result is either the class label or the estimated function value. The
* "CvGBTrees.predict" method enables using the parallel version of the GBT
* model prediction if the OpenCV is built with the TBB library. In this case,
* predictions of single trees are computed in a parallel fashion.</p>
*
* @param sample Input feature vector that has the same format as every training
* set element. If not all the variables were actually used during training,
* <code>sample</code> contains forged values at the appropriate places.
* @param missing Missing values mask, which is a dimensional matrix of the same
* size as <code>sample</code> having the <code>CV_8U</code> type.
* <code>1</code> corresponds to the missing value in the same position in the
* <code>sample</code> vector. If there are no missing values in the feature
* vector, an empty matrix can be passed instead of the missing mask.
* @param slice Parameter defining the part of the ensemble used for prediction.
* <p>If <code>slice = Range.all()</code>, all trees are used. Use this parameter
* to get predictions of the GBT models with different ensemble sizes learning
* only one model.</p>
* @param k Number of tree ensembles built in case of the classification problem
* (see "Training GBT"). Use this parameter to change the output to sum of the
* trees' predictions in the <code>k</code>-th ensemble only. To get the total
* GBT model prediction, <code>k</code> value must be -1. For regression
* problems, <code>k</code> is also equal to -1.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/gradient_boosted_trees.html#cvgbtrees-predict">org.opencv.ml.CvGBTrees.predict</a>
*/
public float predict(Mat sample, Mat missing, Range slice, int k)
{
float retVal = predict_0(nativeObj, sample.nativeObj, missing.nativeObj, slice.start, slice.end, k);
return retVal;
}
CvBoost.java 文件源码
项目:cardboardAR-lib
阅读 17
收藏 0
点赞 0
评论 0
/**
* <p>Predicts a response for an input sample.</p>
*
* <p>The method runs the sample through the trees in the ensemble and returns the
* output class label based on the weighted voting.</p>
*
* @param sample Input sample.
* @param missing Optional mask of missing measurements. To handle missing
* measurements, the weak classifiers must include surrogate splits (see
* <code>CvDTreeParams.use_surrogates</code>).
* @param slice Continuous subset of the sequence of weak classifiers to be used
* for prediction. By default, all the weak classifiers are used.
* @param rawMode Normally, it should be set to <code>false</code>.
* @param returnSum If <code>true</code> then return sum of votes instead of the
* class label.
*
* @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-predict">org.opencv.ml.CvBoost.predict</a>
*/
public float predict(Mat sample, Mat missing, Range slice, boolean rawMode, boolean returnSum)
{
float retVal = predict_0(nativeObj, sample.nativeObj, missing.nativeObj, slice.start, slice.end, rawMode, returnSum);
return retVal;
}