public void KafkaInit(){
Properties props = new Properties();
props.put("zookeeper.connect", "10.15.62.75:2181,10.15.62.76:2181,10.15.62.77:2181");
props.put("group.id", "CadalSec");
ConsumerConfig consumerConfig = new ConsumerConfig(props);
ConsumerConnector consumer = kafka.consumer.Consumer.createJavaConsumerConnector(consumerConfig);
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put("Read-common", new Integer(1));// 第二个参数是指用几个流,多个流是为了并行处理。
Map<String, List<KafkaStream<byte[],byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
KafkaStream<byte[], byte[]> stream = consumerMap.get("Read-common").get(0);// 这里只有一个流,所以得get(0)就可以了。
this.it = stream.iterator();
}
java类kafka.consumer.ConsumerConfig的实例源码
SecSpout.java 文件源码
项目:CadalWorkspace
阅读 15
收藏 0
点赞 0
评论 0
RecBookRecPageSpout.java 文件源码
项目:CadalWorkspace
阅读 15
收藏 0
点赞 0
评论 0
private void KafkaInit(){
Properties props = new Properties();
props.put("zookeeper.connect", "10.15.62.75:2181,10.15.62.76:2181,10.15.62.77:2181");
props.put("group.id", "RecRecPage");
ConsumerConfig consumerConfig = new ConsumerConfig(props);
ConsumerConnector consumer = kafka.consumer.Consumer.createJavaConsumerConnector(consumerConfig);
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put("Rec-recPage", new Integer(1));// 第二个参数是指用几个流,多个流是为了并行处理。
Map<String, List<KafkaStream<byte[],byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
KafkaStream<byte[], byte[]> stream = consumerMap.get("Rec-recPage").get(0);// 这里只有一个流,所以得get(0)就可以了。
this.it = stream.iterator();
}
RecTagRecPageSpout.java 文件源码
项目:CadalWorkspace
阅读 15
收藏 0
点赞 0
评论 0
private void KafkaInit(){
Properties props = new Properties();
props.put("zookeeper.connect", "10.15.62.75:2181,10.15.62.76:2181,10.15.62.77:2181");
props.put("group.id", "RecTagRecPage");
ConsumerConfig consumerConfig = new ConsumerConfig(props);
ConsumerConnector consumer = kafka.consumer.Consumer.createJavaConsumerConnector(consumerConfig);
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put("Rec-recPageTagTag", new Integer(1));// 第二个参数是指用几个流,多个流是为了并行处理。
Map<String, List<KafkaStream<byte[],byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
KafkaStream<byte[], byte[]> stream = consumerMap.get("Rec-recPageTagTag").get(0);// 这里只有一个流,所以得get(0)就可以了。
this.it = stream.iterator();
}
RecBookPersonalPageSpout.java 文件源码
项目:CadalWorkspace
阅读 16
收藏 0
点赞 0
评论 0
private void KafkaInit(){
Properties props = new Properties();
props.put("zookeeper.connect", "10.15.62.75:2181,10.15.62.76:2181,10.15.62.77:2181");
props.put("group.id", "RecPersonalPage");
ConsumerConfig consumerConfig = new ConsumerConfig(props);
ConsumerConnector consumer = kafka.consumer.Consumer.createJavaConsumerConnector(consumerConfig);
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put("Rec-personalPage", new Integer(1));// 第二个参数是指用几个流,多个流是为了并行处理。
Map<String, List<KafkaStream<byte[],byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
KafkaStream<byte[], byte[]> stream = consumerMap.get("Rec-personalPage").get(0);// 这里只有一个流,所以得get(0)就可以了。
this.it = stream.iterator();
}
RecTagBookSpout.java 文件源码
项目:CadalWorkspace
阅读 16
收藏 0
点赞 0
评论 0
private void KafkaInit(){
Properties props = new Properties();
props.put("zookeeper.connect", "10.15.62.75:2181,10.15.62.76:2181,10.15.62.77:2181");
props.put("group.id", "RecTagBook");
ConsumerConfig consumerConfig = new ConsumerConfig(props);
ConsumerConnector consumer = kafka.consumer.Consumer.createJavaConsumerConnector(consumerConfig);
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put("Rec-recPageTagBook", new Integer(1));// 第二个参数是指用几个流,多个流是为了并行处理。
Map<String, List<KafkaStream<byte[],byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
KafkaStream<byte[], byte[]> stream = consumerMap.get("Rec-recPageTagBook").get(0);// 这里只有一个流,所以得get(0)就可以了。
this.it = stream.iterator();
}
RecPersonalPageUserSpout.java 文件源码
项目:CadalWorkspace
阅读 15
收藏 0
点赞 0
评论 0
private void KafkaInit(){
Properties props = new Properties();
props.put("zookeeper.connect", "10.15.62.75:2181,10.15.62.76:2181,10.15.62.77:2181");
props.put("group.id", "RecPersonalPageUser");
ConsumerConfig consumerConfig = new ConsumerConfig(props);
ConsumerConnector consumer = kafka.consumer.Consumer.createJavaConsumerConnector(consumerConfig);
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put("Rec-personalPageUser", new Integer(1));// 第二个参数是指用几个流,多个流是为了并行处理。
Map<String, List<KafkaStream<byte[],byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
KafkaStream<byte[], byte[]> stream = consumerMap.get("Rec-personalPageUser").get(0);// 这里只有一个流,所以得get(0)就可以了。
this.it = stream.iterator();
}
RecBookHomePageSpout.java 文件源码
项目:CadalWorkspace
阅读 15
收藏 0
点赞 0
评论 0
private void KafkaInit(){
Properties props = new Properties();
props.put("zookeeper.connect", "10.15.62.75:2181,10.15.62.76:2181,10.15.62.77:2181");
props.put("group.id", "RecHomePage");
ConsumerConfig consumerConfig = new ConsumerConfig(props);
ConsumerConnector consumer = kafka.consumer.Consumer.createJavaConsumerConnector(consumerConfig);
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put("Rec-homePage", new Integer(1));// 第二个参数是指用几个流,多个流是为了并行处理。
Map<String, List<KafkaStream<byte[],byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
KafkaStream<byte[], byte[]> stream = consumerMap.get("Rec-homePage").get(0);// 这里只有一个流,所以得get(0)就可以了。
this.it = stream.iterator();
}
SearchClickSpout.java 文件源码
项目:CadalWorkspace
阅读 16
收藏 0
点赞 0
评论 0
private void KafkaInit(){
Properties props = new Properties();
props.put("zookeeper.connect", "10.15.62.75:2181,10.15.62.76:2181,10.15.62.77:2181");
props.put("group.id", "SearchClick");
ConsumerConfig consumerConfig = new ConsumerConfig(props);
ConsumerConnector consumer = kafka.consumer.Consumer.createJavaConsumerConnector(consumerConfig);
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put("Search-click", new Integer(1));// 第二个参数是指用几个流,多个流是为了并行处理。
Map<String, List<KafkaStream<byte[],byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
KafkaStream<byte[], byte[]> stream = consumerMap.get("Search-click").get(0);// 这里只有一个流,所以得get(0)就可以了。
this.it = stream.iterator();
}
SearchTermSpout.java 文件源码
项目:CadalWorkspace
阅读 15
收藏 0
点赞 0
评论 0
private void KafkaInit(){
Properties props = new Properties();
props.put("zookeeper.connect", "10.15.62.75:2181,10.15.62.76:2181,10.15.62.77:2181");
props.put("group.id", "SearchTerm");
ConsumerConfig consumerConfig = new ConsumerConfig(props);
ConsumerConnector consumer = kafka.consumer.Consumer.createJavaConsumerConnector(consumerConfig);
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put("Search-query", new Integer(1));// 第二个参数是指用几个流,多个流是为了并行处理。
Map<String, List<KafkaStream<byte[],byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
KafkaStream<byte[], byte[]> stream = consumerMap.get("Search-query").get(0);// 这里只有一个流,所以得get(0)就可以了。
this.it = stream.iterator();
}
PersonalReplySpout.java 文件源码
项目:CadalWorkspace
阅读 15
收藏 0
点赞 0
评论 0
private void KafkaInit(){
Properties props = new Properties();
props.put("zookeeper.connect", "10.15.62.75:2181,10.15.62.76:2181,10.15.62.77:2181");
props.put("group.id", "PersonalReply");
ConsumerConfig consumerConfig = new ConsumerConfig(props);
ConsumerConnector consumer = kafka.consumer.Consumer.createJavaConsumerConnector(consumerConfig);
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put("Personal-reply", new Integer(1));// 第二个参数是指用几个流,多个流是为了并行处理。
Map<String, List<KafkaStream<byte[],byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
KafkaStream<byte[], byte[]> stream = consumerMap.get("Personal-reply").get(0);// 这里只有一个流,所以得get(0)就可以了。
this.it = stream.iterator();
}