Golang cmd-internal-gc.Gbranch类(方法)实例源码

下面列出了Golang cmd-internal-gc.Gbranch 类(方法)源码代码实例,从而了解它的用法。

作者:bibbyflyawa    项目:g   
func ginscmp(op int, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog {
	if gc.Isint[t.Etype] && n1.Op == gc.OLITERAL && n2.Op != gc.OLITERAL {
		// Reverse comparison to place constant last.
		op = gc.Brrev(op)
		n1, n2 = n2, n1
	}

	var r1, r2, g1, g2 gc.Node
	gc.Regalloc(&r1, t, n1)
	gc.Regalloc(&g1, n1.Type, &r1)
	gc.Cgen(n1, &g1)
	gmove(&g1, &r1)
	if gc.Isint[t.Etype] && gc.Isconst(n2, gc.CTINT) {
		ginscon2(optoas(gc.OCMP, t), &r1, n2.Int())
	} else {
		gc.Regalloc(&r2, t, n2)
		gc.Regalloc(&g2, n1.Type, &r2)
		gc.Cgen(n2, &g2)
		gmove(&g2, &r2)
		rawgins(optoas(gc.OCMP, t), &r1, &r2)
		gc.Regfree(&g2)
		gc.Regfree(&r2)
	}
	gc.Regfree(&g1)
	gc.Regfree(&r1)
	return gc.Gbranch(optoas(op, t), nil, likely)
}

作者:bibbyflyawa    项目:g   
/*
 * generate array index into res.
 * n might be any size; res is 32-bit.
 * returns Prog* to patch to panic call.
 */
func cgenindex(n *gc.Node, res *gc.Node, bounded bool) *obj.Prog {
	if !gc.Is64(n.Type) {
		gc.Cgen(n, res)
		return nil
	}

	var tmp gc.Node
	gc.Tempname(&tmp, gc.Types[gc.TINT64])
	gc.Cgen(n, &tmp)
	var lo gc.Node
	var hi gc.Node
	split64(&tmp, &lo, &hi)
	gmove(&lo, res)
	if bounded {
		splitclean()
		return nil
	}

	var n1 gc.Node
	gc.Regalloc(&n1, gc.Types[gc.TINT32], nil)
	var n2 gc.Node
	gc.Regalloc(&n2, gc.Types[gc.TINT32], nil)
	var zero gc.Node
	gc.Nodconst(&zero, gc.Types[gc.TINT32], 0)
	gmove(&hi, &n1)
	gmove(&zero, &n2)
	gins(arm.ACMP, &n1, &n2)
	gc.Regfree(&n2)
	gc.Regfree(&n1)
	splitclean()
	return gc.Gbranch(arm.ABNE, nil, -1)
}

作者:bibbyflyawa    项目:g   
func ginscmp(op int, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog {
	if gc.Isint[t.Etype] && n1.Op == gc.OLITERAL && n1.Int() == 0 && n2.Op != gc.OLITERAL {
		op = gc.Brrev(op)
		n1, n2 = n2, n1
	}
	var r1, r2, g1, g2 gc.Node
	gc.Regalloc(&r1, t, n1)
	gc.Regalloc(&g1, n1.Type, &r1)
	gc.Cgen(n1, &g1)
	gmove(&g1, &r1)
	if gc.Isint[t.Etype] && n2.Op == gc.OLITERAL && n2.Int() == 0 {
		gins(arm.ACMP, &r1, n2)
	} else {
		gc.Regalloc(&r2, t, n2)
		gc.Regalloc(&g2, n1.Type, &r2)
		gc.Cgen(n2, &g2)
		gmove(&g2, &r2)
		gins(optoas(gc.OCMP, t), &r1, &r2)
		gc.Regfree(&g2)
		gc.Regfree(&r2)
	}
	gc.Regfree(&g1)
	gc.Regfree(&r1)
	return gc.Gbranch(optoas(op, t), nil, likely)
}

作者:tidatid    项目:g   
/*
 * generate an addressable node in res, containing the value of n.
 * n is an array index, and might be any size; res width is <= 32-bit.
 * returns Prog* to patch to panic call.
 */
func igenindex(n *gc.Node, res *gc.Node, bounded bool) *obj.Prog {
	if !gc.Is64(n.Type) {
		if n.Addable != 0 {
			// nothing to do.
			*res = *n
		} else {
			gc.Tempname(res, gc.Types[gc.TUINT32])
			gc.Cgen(n, res)
		}

		return nil
	}

	var tmp gc.Node
	gc.Tempname(&tmp, gc.Types[gc.TINT64])
	gc.Cgen(n, &tmp)
	var lo gc.Node
	var hi gc.Node
	split64(&tmp, &lo, &hi)
	gc.Tempname(res, gc.Types[gc.TUINT32])
	gmove(&lo, res)
	if bounded {
		splitclean()
		return nil
	}

	var zero gc.Node
	gc.Nodconst(&zero, gc.Types[gc.TINT32], 0)
	gins(x86.ACMPL, &hi, &zero)
	splitclean()
	return gc.Gbranch(x86.AJNE, nil, +1)
}

作者:tidatid    项目:g   
/*
 * generate floating-point operation.
 */
func cgen_float(n *gc.Node, res *gc.Node) {
	nl := n.Left
	switch n.Op {
	case gc.OEQ,
		gc.ONE,
		gc.OLT,
		gc.OLE,
		gc.OGE:
		p1 := gc.Gbranch(obj.AJMP, nil, 0)
		p2 := gc.Pc
		gmove(gc.Nodbool(true), res)
		p3 := gc.Gbranch(obj.AJMP, nil, 0)
		gc.Patch(p1, gc.Pc)
		gc.Bgen(n, true, 0, p2)
		gmove(gc.Nodbool(false), res)
		gc.Patch(p3, gc.Pc)
		return

	case gc.OPLUS:
		gc.Cgen(nl, res)
		return

	case gc.OCONV:
		if gc.Eqtype(n.Type, nl.Type) || gc.Noconv(n.Type, nl.Type) {
			gc.Cgen(nl, res)
			return
		}

		var n2 gc.Node
		gc.Tempname(&n2, n.Type)
		var n1 gc.Node
		gc.Mgen(nl, &n1, res)
		gmove(&n1, &n2)
		gmove(&n2, res)
		gc.Mfree(&n1)
		return
	}

	if gc.Thearch.Use387 {
		cgen_float387(n, res)
	} else {
		cgen_floatsse(n, res)
	}
}

作者:xslonepiec    项目:goio   
func gencmp0(n *gc.Node, t *gc.Type, o int, likely int, to *obj.Prog) {
	var n1 gc.Node

	gc.Regalloc(&n1, t, nil)
	gc.Cgen(n, &n1)
	a := optoas(gc.OCMP, t)
	if a != arm.ACMP {
		var n2 gc.Node
		gc.Nodconst(&n2, t, 0)
		var n3 gc.Node
		gc.Regalloc(&n3, t, nil)
		gmove(&n2, &n3)
		gins(a, &n1, &n3)
		gc.Regfree(&n3)
	} else {
		gins(arm.ATST, &n1, nil)
	}
	a = optoas(o, t)
	gc.Patch(gc.Gbranch(a, t, likely), to)
	gc.Regfree(&n1)
}

作者:kluesk    项目:go-akaro   
/*
 * allocate a register (reusing res if possible) and generate
 * a = &n
 * The caller must call regfree(a).
 * The generated code checks that the result is not nil.
 */
func agenr(n *gc.Node, a *gc.Node, res *gc.Node) {
	if gc.Debug['g'] != 0 {
		gc.Dump("agenr-n", n)
	}

	nl := n.Left
	nr := n.Right

	switch n.Op {
	case gc.ODOT,
		gc.ODOTPTR,
		gc.OCALLFUNC,
		gc.OCALLMETH,
		gc.OCALLINTER:
		var n1 gc.Node
		igen(n, &n1, res)
		regalloc(a, gc.Types[gc.Tptr], &n1)
		agen(&n1, a)
		regfree(&n1)

	case gc.OIND:
		cgenr(n.Left, a, res)
		gc.Cgen_checknil(a)

	case gc.OINDEX:
		var p2 *obj.Prog // to be patched to panicindex.
		w := uint32(n.Type.Width)

		//bounded = debug['B'] || n->bounded;
		var n3 gc.Node
		var n1 gc.Node
		if nr.Addable != 0 {
			var tmp gc.Node
			if !gc.Isconst(nr, gc.CTINT) {
				gc.Tempname(&tmp, gc.Types[gc.TINT64])
			}
			if !gc.Isconst(nl, gc.CTSTR) {
				agenr(nl, &n3, res)
			}
			if !gc.Isconst(nr, gc.CTINT) {
				cgen(nr, &tmp)
				regalloc(&n1, tmp.Type, nil)
				gmove(&tmp, &n1)
			}
		} else if nl.Addable != 0 {
			if !gc.Isconst(nr, gc.CTINT) {
				var tmp gc.Node
				gc.Tempname(&tmp, gc.Types[gc.TINT64])
				cgen(nr, &tmp)
				regalloc(&n1, tmp.Type, nil)
				gmove(&tmp, &n1)
			}

			if !gc.Isconst(nl, gc.CTSTR) {
				agenr(nl, &n3, res)
			}
		} else {
			var tmp gc.Node
			gc.Tempname(&tmp, gc.Types[gc.TINT64])
			cgen(nr, &tmp)
			nr = &tmp
			if !gc.Isconst(nl, gc.CTSTR) {
				agenr(nl, &n3, res)
			}
			regalloc(&n1, tmp.Type, nil)
			gins(optoas(gc.OAS, tmp.Type), &tmp, &n1)
		}

		// &a is in &n3 (allocated in res)
		// i is in &n1 (if not constant)
		// w is width

		// constant index
		if gc.Isconst(nr, gc.CTINT) {
			if gc.Isconst(nl, gc.CTSTR) {
				gc.Fatal("constant string constant index")
			}
			v := uint64(gc.Mpgetfix(nr.Val.U.Xval))
			if gc.Isslice(nl.Type) || nl.Type.Etype == gc.TSTRING {
				if gc.Debug['B'] == 0 && !n.Bounded {
					n1 = n3
					n1.Op = gc.OINDREG
					n1.Type = gc.Types[gc.Tptr]
					n1.Xoffset = int64(gc.Array_nel)
					var n4 gc.Node
					regalloc(&n4, n1.Type, nil)
					gmove(&n1, &n4)
					ginscon2(optoas(gc.OCMP, gc.Types[gc.TUINT64]), &n4, int64(v))
					regfree(&n4)
					p1 := gc.Gbranch(optoas(gc.OGT, gc.Types[gc.TUINT64]), nil, +1)
					ginscall(gc.Panicindex, 0)
					gc.Patch(p1, gc.Pc)
				}

//.........这里部分代码省略.........

作者:xslonepiec    项目:goio   
//.........这里部分代码省略.........
		} else if tt == gc.TINT32 {
			gins(x86.AFMOVLP, &r1, t)
		} else {
			gins(x86.AFMOVVP, &r1, t)
		}
		gins(x86.AFLDCW, &t1, nil)
		return

	case gc.TFLOAT32<<16 | gc.TUINT64,
		gc.TFLOAT64<<16 | gc.TUINT64:
		if !gc.Ismem(f) {
			cvt = f.Type
			goto hardmem
		}

		bignodes()
		var f0 gc.Node
		gc.Nodreg(&f0, gc.Types[ft], x86.REG_F0)
		var f1 gc.Node
		gc.Nodreg(&f1, gc.Types[ft], x86.REG_F0+1)
		var ax gc.Node
		gc.Nodreg(&ax, gc.Types[gc.TUINT16], x86.REG_AX)

		if ft == gc.TFLOAT32 {
			gins(x86.AFMOVF, f, &f0)
		} else {
			gins(x86.AFMOVD, f, &f0)
		}

		// if 0 > v { answer = 0 }
		gins(x86.AFMOVD, &zerof, &f0)

		gins(x86.AFUCOMIP, &f0, &f1)
		p1 := gc.Gbranch(optoas(gc.OGT, gc.Types[tt]), nil, 0)

		// if 1<<64 <= v { answer = 0 too }
		gins(x86.AFMOVD, &two64f, &f0)

		gins(x86.AFUCOMIP, &f0, &f1)
		p2 := gc.Gbranch(optoas(gc.OGT, gc.Types[tt]), nil, 0)
		gc.Patch(p1, gc.Pc)
		gins(x86.AFMOVVP, &f0, t) // don't care about t, but will pop the stack
		var thi gc.Node
		var tlo gc.Node
		split64(t, &tlo, &thi)
		gins(x86.AMOVL, ncon(0), &tlo)
		gins(x86.AMOVL, ncon(0), &thi)
		splitclean()
		p1 = gc.Gbranch(obj.AJMP, nil, 0)
		gc.Patch(p2, gc.Pc)

		// in range; algorithm is:
		//	if small enough, use native float64 -> int64 conversion.
		//	otherwise, subtract 2^63, convert, and add it back.

		// set round to zero mode during conversion
		var t1 gc.Node
		memname(&t1, gc.Types[gc.TUINT16])

		var t2 gc.Node
		memname(&t2, gc.Types[gc.TUINT16])
		gins(x86.AFSTCW, nil, &t1)
		gins(x86.AMOVW, ncon(0xf7f), &t2)
		gins(x86.AFLDCW, &t2, nil)

		// actual work

作者:kluesk    项目:go-akaro   
//.........这里部分代码省略.........

	var dst gc.Node
	var src gc.Node
	if n.Ullman >= res.Ullman {
		agenr(n, &dst, res) // temporarily use dst
		regalloc(&src, gc.Types[gc.Tptr], nil)
		gins(ppc64.AMOVD, &dst, &src)
		if res.Op == gc.ONAME {
			gc.Gvardef(res)
		}
		agen(res, &dst)
	} else {
		if res.Op == gc.ONAME {
			gc.Gvardef(res)
		}
		agenr(res, &dst, res)
		agenr(n, &src, nil)
	}

	var tmp gc.Node
	regalloc(&tmp, gc.Types[gc.Tptr], nil)

	// set up end marker
	var nend gc.Node

	// move src and dest to the end of block if necessary
	if dir < 0 {
		if c >= 4 {
			regalloc(&nend, gc.Types[gc.Tptr], nil)
			gins(ppc64.AMOVD, &src, &nend)
		}

		p := gins(ppc64.AADD, nil, &src)
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = w

		p = gins(ppc64.AADD, nil, &dst)
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = w
	} else {
		p := gins(ppc64.AADD, nil, &src)
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = int64(-dir)

		p = gins(ppc64.AADD, nil, &dst)
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = int64(-dir)

		if c >= 4 {
			regalloc(&nend, gc.Types[gc.Tptr], nil)
			p := gins(ppc64.AMOVD, &src, &nend)
			p.From.Type = obj.TYPE_ADDR
			p.From.Offset = w
		}
	}

	// move
	// TODO: enable duffcopy for larger copies.
	if c >= 4 {
		p := gins(op, &src, &tmp)
		p.From.Type = obj.TYPE_MEM
		p.From.Offset = int64(dir)
		ploop := p

		p = gins(op, &tmp, &dst)
		p.To.Type = obj.TYPE_MEM
		p.To.Offset = int64(dir)

		p = gins(ppc64.ACMP, &src, &nend)

		gc.Patch(gc.Gbranch(ppc64.ABNE, nil, 0), ploop)
		regfree(&nend)
	} else {
		// TODO(austin): Instead of generating ADD $-8,R8; ADD
		// $-8,R7; n*(MOVDU 8(R8),R9; MOVDU R9,8(R7);) just
		// generate the offsets directly and eliminate the
		// ADDs.  That will produce shorter, more
		// pipeline-able code.
		var p *obj.Prog
		for {
			tmp14 := c
			c--
			if tmp14 <= 0 {
				break
			}

			p = gins(op, &src, &tmp)
			p.From.Type = obj.TYPE_MEM
			p.From.Offset = int64(dir)

			p = gins(op, &tmp, &dst)
			p.To.Type = obj.TYPE_MEM
			p.To.Offset = int64(dir)
		}
	}

	regfree(&dst)
	regfree(&src)
	regfree(&tmp)
}

作者:kluesk    项目:go-akaro   
//.........这里部分代码省略.........
				var n2 gc.Node
				regalloc(&n2, n.Type, nil)
				p1 := gins(a, nil, &n2)
				p1.From = addr
				gins(a, &n2, res)
				regfree(&n2)
			}

			sudoclean()
			return
		}
	}

	// TODO(minux): we shouldn't reverse FP comparisons, but then we need to synthesize
	// OGE, OLE, and ONE ourselves.
	// if(nl != N && isfloat[n->type->etype] && isfloat[nl->type->etype]) goto flt;

	var a int
	switch n.Op {
	default:
		gc.Dump("cgen", n)
		gc.Fatal("cgen: unknown op %v", gc.Nconv(n, obj.FmtShort|obj.FmtSign))

		// these call bgen to get a bool value
	case gc.OOROR,
		gc.OANDAND,
		gc.OEQ,
		gc.ONE,
		gc.OLT,
		gc.OLE,
		gc.OGE,
		gc.OGT,
		gc.ONOT:
		p1 := gc.Gbranch(ppc64.ABR, nil, 0)

		p2 := gc.Pc
		gmove(gc.Nodbool(true), res)
		p3 := gc.Gbranch(ppc64.ABR, nil, 0)
		gc.Patch(p1, gc.Pc)
		bgen(n, true, 0, p2)
		gmove(gc.Nodbool(false), res)
		gc.Patch(p3, gc.Pc)
		return

	case gc.OPLUS:
		cgen(nl, res)
		return

		// unary
	case gc.OCOM:
		a := optoas(gc.OXOR, nl.Type)

		var n1 gc.Node
		regalloc(&n1, nl.Type, nil)
		cgen(nl, &n1)
		var n2 gc.Node
		gc.Nodconst(&n2, nl.Type, -1)
		gins(a, &n2, &n1)
		gmove(&n1, res)
		regfree(&n1)
		return

	case gc.OMINUS:
		if gc.Isfloat[nl.Type.Etype] {
			nr = gc.Nodintconst(-1)
			gc.Convlit(&nr, n.Type)

作者:tidatid    项目:g   
/*
 * generate division.
 * caller must set:
 *	ax = allocated AX register
 *	dx = allocated DX register
 * generates one of:
 *	res = nl / nr
 *	res = nl % nr
 * according to op.
 */
func dodiv(op int, nl *gc.Node, nr *gc.Node, res *gc.Node, ax *gc.Node, dx *gc.Node) {
	// Have to be careful about handling
	// most negative int divided by -1 correctly.
	// The hardware will trap.
	// Also the byte divide instruction needs AH,
	// which we otherwise don't have to deal with.
	// Easiest way to avoid for int8, int16: use int32.
	// For int32 and int64, use explicit test.
	// Could use int64 hw for int32.
	t := nl.Type

	t0 := t
	check := 0
	if gc.Issigned[t.Etype] {
		check = 1
		if gc.Isconst(nl, gc.CTINT) && gc.Mpgetfix(nl.Val.U.Xval) != -1<<uint64(t.Width*8-1) {
			check = 0
		} else if gc.Isconst(nr, gc.CTINT) && gc.Mpgetfix(nr.Val.U.Xval) != -1 {
			check = 0
		}
	}

	if t.Width < 4 {
		if gc.Issigned[t.Etype] {
			t = gc.Types[gc.TINT32]
		} else {
			t = gc.Types[gc.TUINT32]
		}
		check = 0
	}

	var t1 gc.Node
	gc.Tempname(&t1, t)
	var t2 gc.Node
	gc.Tempname(&t2, t)
	if t0 != t {
		var t3 gc.Node
		gc.Tempname(&t3, t0)
		var t4 gc.Node
		gc.Tempname(&t4, t0)
		gc.Cgen(nl, &t3)
		gc.Cgen(nr, &t4)

		// Convert.
		gmove(&t3, &t1)

		gmove(&t4, &t2)
	} else {
		gc.Cgen(nl, &t1)
		gc.Cgen(nr, &t2)
	}

	var n1 gc.Node
	if !gc.Samereg(ax, res) && !gc.Samereg(dx, res) {
		gc.Regalloc(&n1, t, res)
	} else {
		gc.Regalloc(&n1, t, nil)
	}
	gmove(&t2, &n1)
	gmove(&t1, ax)
	var p2 *obj.Prog
	var n4 gc.Node
	if gc.Nacl {
		// Native Client does not relay the divide-by-zero trap
		// to the executing program, so we must insert a check
		// for ourselves.
		gc.Nodconst(&n4, t, 0)

		gins(optoas(gc.OCMP, t), &n1, &n4)
		p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
		if panicdiv == nil {
			panicdiv = gc.Sysfunc("panicdivide")
		}
		gc.Ginscall(panicdiv, -1)
		gc.Patch(p1, gc.Pc)
	}

	if check != 0 {
		gc.Nodconst(&n4, t, -1)
		gins(optoas(gc.OCMP, t), &n1, &n4)
		p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
		if op == gc.ODIV {
			// a / (-1) is -a.
			gins(optoas(gc.OMINUS, t), nil, ax)

			gmove(ax, res)
		} else {
			// a % (-1) is 0.
			gc.Nodconst(&n4, t, 0)

//.........这里部分代码省略.........

作者:bibbyflyawa    项目:g   
//.........这里部分代码省略.........
		if w < 32 && op == gc.OLSH {
			gins(optoas(gc.OAS, nl.Type), &n1, &n1)
		}
		gmove(&n1, res)
		gc.Regfree(&n1)
		return
	}

	tr := nr.Type
	var t gc.Node
	var n1 gc.Node
	var n2 gc.Node
	var n3 gc.Node
	if tr.Width > 4 {
		var nt gc.Node
		gc.Tempname(&nt, nr.Type)
		if nl.Ullman >= nr.Ullman {
			gc.Regalloc(&n2, nl.Type, res)
			gc.Cgen(nl, &n2)
			gc.Cgen(nr, &nt)
			n1 = nt
		} else {
			gc.Cgen(nr, &nt)
			gc.Regalloc(&n2, nl.Type, res)
			gc.Cgen(nl, &n2)
		}

		var hi gc.Node
		var lo gc.Node
		split64(&nt, &lo, &hi)
		gc.Regalloc(&n1, gc.Types[gc.TUINT32], nil)
		gc.Regalloc(&n3, gc.Types[gc.TUINT32], nil)
		gmove(&lo, &n1)
		gmove(&hi, &n3)
		splitclean()
		gins(arm.ATST, &n3, nil)
		gc.Nodconst(&t, gc.Types[gc.TUINT32], int64(w))
		p1 := gins(arm.AMOVW, &t, &n1)
		p1.Scond = arm.C_SCOND_NE
		tr = gc.Types[gc.TUINT32]
		gc.Regfree(&n3)
	} else {
		if nl.Ullman >= nr.Ullman {
			gc.Regalloc(&n2, nl.Type, res)
			gc.Cgen(nl, &n2)
			gc.Regalloc(&n1, nr.Type, nil)
			gc.Cgen(nr, &n1)
		} else {
			gc.Regalloc(&n1, nr.Type, nil)
			gc.Cgen(nr, &n1)
			gc.Regalloc(&n2, nl.Type, res)
			gc.Cgen(nl, &n2)
		}
	}

	// test for shift being 0
	gins(arm.ATST, &n1, nil)

	p3 := gc.Gbranch(arm.ABEQ, nil, -1)

	// test and fix up large shifts
	// TODO: if(!bounded), don't emit some of this.
	gc.Regalloc(&n3, tr, nil)

	gc.Nodconst(&t, gc.Types[gc.TUINT32], int64(w))
	gmove(&t, &n3)
	gins(arm.ACMP, &n1, &n3)
	if op == gc.ORSH {
		var p1 *obj.Prog
		var p2 *obj.Prog
		if gc.Issigned[nl.Type.Etype] {
			p1 = gshift(arm.AMOVW, &n2, arm.SHIFT_AR, int32(w)-1, &n2)
			p2 = gregshift(arm.AMOVW, &n2, arm.SHIFT_AR, &n1, &n2)
		} else {
			p1 = gins(arm.AEOR, &n2, &n2)
			p2 = gregshift(arm.AMOVW, &n2, arm.SHIFT_LR, &n1, &n2)
		}

		p1.Scond = arm.C_SCOND_HS
		p2.Scond = arm.C_SCOND_LO
	} else {
		p1 := gins(arm.AEOR, &n2, &n2)
		p2 := gregshift(arm.AMOVW, &n2, arm.SHIFT_LL, &n1, &n2)
		p1.Scond = arm.C_SCOND_HS
		p2.Scond = arm.C_SCOND_LO
	}

	gc.Regfree(&n3)

	gc.Patch(p3, gc.Pc)

	// Left-shift of smaller word must be sign/zero-extended.
	if w < 32 && op == gc.OLSH {
		gins(optoas(gc.OAS, nl.Type), &n2, &n2)
	}
	gmove(&n2, res)

	gc.Regfree(&n1)
	gc.Regfree(&n2)
}

作者:kluesk    项目:go-akaro   
/*
 * generate shift according to op, one of:
 *	res = nl << nr
 *	res = nl >> nr
 */
func cgen_shift(op int, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) {
	a := int(optoas(op, nl.Type))

	if nr.Op == gc.OLITERAL {
		var n1 gc.Node
		regalloc(&n1, nl.Type, res)
		cgen(nl, &n1)
		sc := uint64(uint64(gc.Mpgetfix(nr.Val.U.Xval)))
		if sc >= uint64(nl.Type.Width*8) {
			// large shift gets 2 shifts by width-1
			var n3 gc.Node
			gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1)

			gins(a, &n3, &n1)
			gins(a, &n3, &n1)
		} else {
			gins(a, nr, &n1)
		}
		gmove(&n1, res)
		regfree(&n1)
		return
	}

	if nl.Ullman >= gc.UINF {
		var n4 gc.Node
		gc.Tempname(&n4, nl.Type)
		cgen(nl, &n4)
		nl = &n4
	}

	if nr.Ullman >= gc.UINF {
		var n5 gc.Node
		gc.Tempname(&n5, nr.Type)
		cgen(nr, &n5)
		nr = &n5
	}

	// Allow either uint32 or uint64 as shift type,
	// to avoid unnecessary conversion from uint32 to uint64
	// just to do the comparison.
	tcount := gc.Types[gc.Simtype[nr.Type.Etype]]

	if tcount.Etype < gc.TUINT32 {
		tcount = gc.Types[gc.TUINT32]
	}

	var n1 gc.Node
	regalloc(&n1, nr.Type, nil) // to hold the shift type in CX
	var n3 gc.Node
	regalloc(&n3, tcount, &n1) // to clear high bits of CX

	var n2 gc.Node
	regalloc(&n2, nl.Type, res)

	if nl.Ullman >= nr.Ullman {
		cgen(nl, &n2)
		cgen(nr, &n1)
		gmove(&n1, &n3)
	} else {
		cgen(nr, &n1)
		gmove(&n1, &n3)
		cgen(nl, &n2)
	}

	regfree(&n3)

	// test and fix up large shifts
	if !bounded {
		gc.Nodconst(&n3, tcount, nl.Type.Width*8)
		gins(optoas(gc.OCMP, tcount), &n1, &n3)
		p1 := (*obj.Prog)(gc.Gbranch(optoas(gc.OLT, tcount), nil, +1))
		if op == gc.ORSH && gc.Issigned[nl.Type.Etype] {
			gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1)
			gins(a, &n3, &n2)
		} else {
			gc.Nodconst(&n3, nl.Type, 0)
			gmove(&n3, &n2)
		}

		gc.Patch(p1, gc.Pc)
	}

	gins(a, &n1, &n2)

	gmove(&n2, res)

	regfree(&n1)
	regfree(&n2)
}

作者:xslonepiec    项目:goio   
/*
 * generate division.
 * generates one of:
 *	res = nl / nr
 *	res = nl % nr
 * according to op.
 */
func dodiv(op int, nl *gc.Node, nr *gc.Node, res *gc.Node) {
	// Have to be careful about handling
	// most negative int divided by -1 correctly.
	// The hardware will trap.
	// Also the byte divide instruction needs AH,
	// which we otherwise don't have to deal with.
	// Easiest way to avoid for int8, int16: use int32.
	// For int32 and int64, use explicit test.
	// Could use int64 hw for int32.
	t := nl.Type

	t0 := t
	check := 0
	if gc.Issigned[t.Etype] {
		check = 1
		if gc.Isconst(nl, gc.CTINT) && gc.Mpgetfix(nl.Val.U.Xval) != -(1<<uint64(t.Width*8-1)) {
			check = 0
		} else if gc.Isconst(nr, gc.CTINT) && gc.Mpgetfix(nr.Val.U.Xval) != -1 {
			check = 0
		}
	}

	if t.Width < 4 {
		if gc.Issigned[t.Etype] {
			t = gc.Types[gc.TINT32]
		} else {
			t = gc.Types[gc.TUINT32]
		}
		check = 0
	}

	a := optoas(op, t)

	var n3 gc.Node
	gc.Regalloc(&n3, t0, nil)
	var ax gc.Node
	var oldax gc.Node
	if nl.Ullman >= nr.Ullman {
		savex(x86.REG_AX, &ax, &oldax, res, t0)
		gc.Cgen(nl, &ax)
		gc.Regalloc(&ax, t0, &ax) // mark ax live during cgen
		gc.Cgen(nr, &n3)
		gc.Regfree(&ax)
	} else {
		gc.Cgen(nr, &n3)
		savex(x86.REG_AX, &ax, &oldax, res, t0)
		gc.Cgen(nl, &ax)
	}

	if t != t0 {
		// Convert
		ax1 := ax

		n31 := n3
		ax.Type = t
		n3.Type = t
		gmove(&ax1, &ax)
		gmove(&n31, &n3)
	}

	var n4 gc.Node
	if gc.Nacl {
		// Native Client does not relay the divide-by-zero trap
		// to the executing program, so we must insert a check
		// for ourselves.
		gc.Nodconst(&n4, t, 0)

		gins(optoas(gc.OCMP, t), &n3, &n4)
		p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
		if panicdiv == nil {
			panicdiv = gc.Sysfunc("panicdivide")
		}
		gc.Ginscall(panicdiv, -1)
		gc.Patch(p1, gc.Pc)
	}

	var p2 *obj.Prog
	if check != 0 {
		gc.Nodconst(&n4, t, -1)
		gins(optoas(gc.OCMP, t), &n3, &n4)
		p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
		if op == gc.ODIV {
			// a / (-1) is -a.
			gins(optoas(gc.OMINUS, t), nil, &ax)

			gmove(&ax, res)
		} else {
			// a % (-1) is 0.
			gc.Nodconst(&n4, t, 0)

			gmove(&n4, res)
		}

//.........这里部分代码省略.........

作者:bibbyflyawa    项目:g   
//.........这里部分代码省略.........

	var dst gc.Node
	var src gc.Node
	if n.Ullman >= res.Ullman {
		gc.Agenr(n, &dst, res) // temporarily use dst
		gc.Regalloc(&src, gc.Types[gc.Tptr], nil)
		gins(ppc64.AMOVD, &dst, &src)
		if res.Op == gc.ONAME {
			gc.Gvardef(res)
		}
		gc.Agen(res, &dst)
	} else {
		if res.Op == gc.ONAME {
			gc.Gvardef(res)
		}
		gc.Agenr(res, &dst, res)
		gc.Agenr(n, &src, nil)
	}

	var tmp gc.Node
	gc.Regalloc(&tmp, gc.Types[gc.Tptr], nil)

	// set up end marker
	var nend gc.Node

	// move src and dest to the end of block if necessary
	if dir < 0 {
		if c >= 4 {
			gc.Regalloc(&nend, gc.Types[gc.Tptr], nil)
			gins(ppc64.AMOVD, &src, &nend)
		}

		p := gins(ppc64.AADD, nil, &src)
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = w

		p = gins(ppc64.AADD, nil, &dst)
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = w
	} else {
		p := gins(ppc64.AADD, nil, &src)
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = int64(-dir)

		p = gins(ppc64.AADD, nil, &dst)
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = int64(-dir)

		if c >= 4 {
			gc.Regalloc(&nend, gc.Types[gc.Tptr], nil)
			p := gins(ppc64.AMOVD, &src, &nend)
			p.From.Type = obj.TYPE_ADDR
			p.From.Offset = w
		}
	}

	// move
	// TODO: enable duffcopy for larger copies.
	if c >= 4 {
		p := gins(op, &src, &tmp)
		p.From.Type = obj.TYPE_MEM
		p.From.Offset = int64(dir)
		ploop := p

		p = gins(op, &tmp, &dst)
		p.To.Type = obj.TYPE_MEM
		p.To.Offset = int64(dir)

		p = gins(ppc64.ACMP, &src, &nend)

		gc.Patch(gc.Gbranch(ppc64.ABNE, nil, 0), ploop)
		gc.Regfree(&nend)
	} else {
		// TODO(austin): Instead of generating ADD $-8,R8; ADD
		// $-8,R7; n*(MOVDU 8(R8),R9; MOVDU R9,8(R7);) just
		// generate the offsets directly and eliminate the
		// ADDs.  That will produce shorter, more
		// pipeline-able code.
		var p *obj.Prog
		for {
			tmp14 := c
			c--
			if tmp14 <= 0 {
				break
			}

			p = gins(op, &src, &tmp)
			p.From.Type = obj.TYPE_MEM
			p.From.Offset = int64(dir)

			p = gins(op, &tmp, &dst)
			p.To.Type = obj.TYPE_MEM
			p.To.Offset = int64(dir)
		}
	}

	gc.Regfree(&dst)
	gc.Regfree(&src)
	gc.Regfree(&tmp)
}

作者:kluesk    项目:go-akaro   
/*
 * generate:
 *	call f
 *	proc=-1	normal call but no return
 *	proc=0	normal call
 *	proc=1	goroutine run in new proc
 *	proc=2	defer call save away stack
  *	proc=3	normal call to C pointer (not Go func value)
*/
func ginscall(f *gc.Node, proc int) {
	if f.Type != nil {
		extra := int32(0)
		if proc == 1 || proc == 2 {
			extra = 2 * int32(gc.Widthptr)
		}
		gc.Setmaxarg(f.Type, extra)
	}

	switch proc {
	default:
		gc.Fatal("ginscall: bad proc %d", proc)

	case 0, // normal call
		-1: // normal call but no return
		if f.Op == gc.ONAME && f.Class == gc.PFUNC {
			if f == gc.Deferreturn {
				// Deferred calls will appear to be returning to
				// the CALL deferreturn(SB) that we are about to emit.
				// However, the stack trace code will show the line
				// of the instruction byte before the return PC.
				// To avoid that being an unrelated instruction,
				// insert an x86 NOP that we will have the right line number.
				// x86 NOP 0x90 is really XCHG AX, AX; use that description
				// because the NOP pseudo-instruction will be removed by
				// the linker.
				var reg gc.Node
				gc.Nodreg(&reg, gc.Types[gc.TINT], x86.REG_AX)

				gins(x86.AXCHGL, &reg, &reg)
			}

			p := gins(obj.ACALL, nil, f)
			gc.Afunclit(&p.To, f)
			if proc == -1 || gc.Noreturn(p) {
				gins(obj.AUNDEF, nil, nil)
			}
			break
		}

		var reg gc.Node
		gc.Nodreg(&reg, gc.Types[gc.Tptr], x86.REG_DX)
		var r1 gc.Node
		gc.Nodreg(&r1, gc.Types[gc.Tptr], x86.REG_BX)
		gmove(f, &reg)
		reg.Op = gc.OINDREG
		gmove(&reg, &r1)
		reg.Op = gc.OREGISTER
		gins(obj.ACALL, &reg, &r1)

	case 3: // normal call of c function pointer
		gins(obj.ACALL, nil, f)

	case 1, // call in new proc (go)
		2: // deferred call (defer)
		var stk gc.Node

		stk.Op = gc.OINDREG
		stk.Val.U.Reg = x86.REG_SP
		stk.Xoffset = 0

		// size of arguments at 0(SP)
		var con gc.Node
		gc.Nodconst(&con, gc.Types[gc.TINT32], int64(gc.Argsize(f.Type)))

		gins(x86.AMOVL, &con, &stk)

		// FuncVal* at 4(SP)
		stk.Xoffset = int64(gc.Widthptr)

		gins(x86.AMOVL, f, &stk)

		if proc == 1 {
			ginscall(gc.Newproc, 0)
		} else {
			ginscall(gc.Deferproc, 0)
		}
		if proc == 2 {
			var reg gc.Node
			gc.Nodreg(&reg, gc.Types[gc.TINT32], x86.REG_AX)
			gins(x86.ATESTL, &reg, &reg)
			p := gc.Gbranch(x86.AJEQ, nil, +1)
			cgen_ret(nil)
			gc.Patch(p, gc.Pc)
		}
	}
}

作者:xslonepiec    项目:goio   
//.........这里部分代码省略.........
		gins(x86.AMOVL, &lo1, &ax)

		gins(x86.AMOVL, &hi1, &dx)
		gins(x86.AADDL, &lo2, &ax)
		gins(x86.AADCL, &hi2, &dx)

		// TODO: Constants.
	case gc.OSUB:
		gins(x86.AMOVL, &lo1, &ax)

		gins(x86.AMOVL, &hi1, &dx)
		gins(x86.ASUBL, &lo2, &ax)
		gins(x86.ASBBL, &hi2, &dx)

		// let's call the next two EX and FX.
	case gc.OMUL:
		var ex gc.Node
		gc.Regalloc(&ex, gc.Types[gc.TPTR32], nil)

		var fx gc.Node
		gc.Regalloc(&fx, gc.Types[gc.TPTR32], nil)

		// load args into DX:AX and EX:CX.
		gins(x86.AMOVL, &lo1, &ax)

		gins(x86.AMOVL, &hi1, &dx)
		gins(x86.AMOVL, &lo2, &cx)
		gins(x86.AMOVL, &hi2, &ex)

		// if DX and EX are zero, use 32 x 32 -> 64 unsigned multiply.
		gins(x86.AMOVL, &dx, &fx)

		gins(x86.AORL, &ex, &fx)
		p1 := gc.Gbranch(x86.AJNE, nil, 0)
		gins(x86.AMULL, &cx, nil) // implicit &ax
		p2 := gc.Gbranch(obj.AJMP, nil, 0)
		gc.Patch(p1, gc.Pc)

		// full 64x64 -> 64, from 32x32 -> 64.
		gins(x86.AIMULL, &cx, &dx)

		gins(x86.AMOVL, &ax, &fx)
		gins(x86.AIMULL, &ex, &fx)
		gins(x86.AADDL, &dx, &fx)
		gins(x86.AMOVL, &cx, &dx)
		gins(x86.AMULL, &dx, nil) // implicit &ax
		gins(x86.AADDL, &fx, &dx)
		gc.Patch(p2, gc.Pc)

		gc.Regfree(&ex)
		gc.Regfree(&fx)

		// We only rotate by a constant c in [0,64).
	// if c >= 32:
	//	lo, hi = hi, lo
	//	c -= 32
	// if c == 0:
	//	no-op
	// else:
	//	t = hi
	//	shld hi:lo, c
	//	shld lo:t, c
	case gc.OLROT:
		v := uint64(gc.Mpgetfix(r.Val.U.Xval))

		if v >= 32 {

作者:xslonepiec    项目:goio   
/*
 * generate comparison of nl, nr, both 64-bit.
 * nl is memory; nr is constant or memory.
 */
func cmp64(nl *gc.Node, nr *gc.Node, op int, likely int, to *obj.Prog) {
	var lo1 gc.Node
	var hi1 gc.Node
	var lo2 gc.Node
	var hi2 gc.Node
	var rr gc.Node

	split64(nl, &lo1, &hi1)
	split64(nr, &lo2, &hi2)

	// compare most significant word;
	// if they differ, we're done.
	t := hi1.Type

	if nl.Op == gc.OLITERAL || nr.Op == gc.OLITERAL {
		gins(x86.ACMPL, &hi1, &hi2)
	} else {
		gc.Regalloc(&rr, gc.Types[gc.TINT32], nil)
		gins(x86.AMOVL, &hi1, &rr)
		gins(x86.ACMPL, &rr, &hi2)
		gc.Regfree(&rr)
	}

	var br *obj.Prog
	switch op {
	default:
		gc.Fatal("cmp64 %v %v", gc.Oconv(int(op), 0), gc.Tconv(t, 0))

		// cmp hi
	// jne L
	// cmp lo
	// jeq to
	// L:
	case gc.OEQ:
		br = gc.Gbranch(x86.AJNE, nil, -likely)

		// cmp hi
	// jne to
	// cmp lo
	// jne to
	case gc.ONE:
		gc.Patch(gc.Gbranch(x86.AJNE, nil, likely), to)

		// cmp hi
	// jgt to
	// jlt L
	// cmp lo
	// jge to (or jgt to)
	// L:
	case gc.OGE,
		gc.OGT:
		gc.Patch(gc.Gbranch(optoas(gc.OGT, t), nil, likely), to)

		br = gc.Gbranch(optoas(gc.OLT, t), nil, -likely)

		// cmp hi
	// jlt to
	// jgt L
	// cmp lo
	// jle to (or jlt to)
	// L:
	case gc.OLE,
		gc.OLT:
		gc.Patch(gc.Gbranch(optoas(gc.OLT, t), nil, likely), to)

		br = gc.Gbranch(optoas(gc.OGT, t), nil, -likely)
	}

	// compare least significant word
	t = lo1.Type

	if nl.Op == gc.OLITERAL || nr.Op == gc.OLITERAL {
		gins(x86.ACMPL, &lo1, &lo2)
	} else {
		gc.Regalloc(&rr, gc.Types[gc.TINT32], nil)
		gins(x86.AMOVL, &lo1, &rr)
		gins(x86.ACMPL, &rr, &lo2)
		gc.Regfree(&rr)
	}

	// jump again
	gc.Patch(gc.Gbranch(optoas(op, t), nil, likely), to)

	// point first branch down here if appropriate
	if br != nil {
		gc.Patch(br, gc.Pc)
	}

	splitclean()
	splitclean()
}

作者:xslonepiec    项目:goio   
func floatmove_387(f *gc.Node, t *gc.Node) {
	var r1 gc.Node
	var a int

	ft := gc.Simsimtype(f.Type)
	tt := gc.Simsimtype(t.Type)
	cvt := t.Type

	switch uint32(ft)<<16 | uint32(tt) {
	default:
		goto fatal

		/*
		* float to integer
		 */
	case gc.TFLOAT32<<16 | gc.TINT16,
		gc.TFLOAT32<<16 | gc.TINT32,
		gc.TFLOAT32<<16 | gc.TINT64,
		gc.TFLOAT64<<16 | gc.TINT16,
		gc.TFLOAT64<<16 | gc.TINT32,
		gc.TFLOAT64<<16 | gc.TINT64:
		if t.Op == gc.OREGISTER {
			goto hardmem
		}
		var r1 gc.Node
		gc.Nodreg(&r1, gc.Types[ft], x86.REG_F0)
		if f.Op != gc.OREGISTER {
			if ft == gc.TFLOAT32 {
				gins(x86.AFMOVF, f, &r1)
			} else {
				gins(x86.AFMOVD, f, &r1)
			}
		}

		// set round to zero mode during conversion
		var t1 gc.Node
		memname(&t1, gc.Types[gc.TUINT16])

		var t2 gc.Node
		memname(&t2, gc.Types[gc.TUINT16])
		gins(x86.AFSTCW, nil, &t1)
		gins(x86.AMOVW, ncon(0xf7f), &t2)
		gins(x86.AFLDCW, &t2, nil)
		if tt == gc.TINT16 {
			gins(x86.AFMOVWP, &r1, t)
		} else if tt == gc.TINT32 {
			gins(x86.AFMOVLP, &r1, t)
		} else {
			gins(x86.AFMOVVP, &r1, t)
		}
		gins(x86.AFLDCW, &t1, nil)
		return

		// convert via int32.
	case gc.TFLOAT32<<16 | gc.TINT8,
		gc.TFLOAT32<<16 | gc.TUINT16,
		gc.TFLOAT32<<16 | gc.TUINT8,
		gc.TFLOAT64<<16 | gc.TINT8,
		gc.TFLOAT64<<16 | gc.TUINT16,
		gc.TFLOAT64<<16 | gc.TUINT8:
		var t1 gc.Node
		gc.Tempname(&t1, gc.Types[gc.TINT32])

		gmove(f, &t1)
		switch tt {
		default:
			gc.Fatal("gmove %v", gc.Nconv(t, 0))

		case gc.TINT8:
			gins(x86.ACMPL, &t1, ncon(-0x80&(1<<32-1)))
			p1 := gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TINT32]), nil, -1)
			gins(x86.ACMPL, &t1, ncon(0x7f))
			p2 := gc.Gbranch(optoas(gc.OGT, gc.Types[gc.TINT32]), nil, -1)
			p3 := gc.Gbranch(obj.AJMP, nil, 0)
			gc.Patch(p1, gc.Pc)
			gc.Patch(p2, gc.Pc)
			gmove(ncon(-0x80&(1<<32-1)), &t1)
			gc.Patch(p3, gc.Pc)
			gmove(&t1, t)

		case gc.TUINT8:
			gins(x86.ATESTL, ncon(0xffffff00), &t1)
			p1 := gc.Gbranch(x86.AJEQ, nil, +1)
			gins(x86.AMOVL, ncon(0), &t1)
			gc.Patch(p1, gc.Pc)
			gmove(&t1, t)

		case gc.TUINT16:
			gins(x86.ATESTL, ncon(0xffff0000), &t1)
			p1 := gc.Gbranch(x86.AJEQ, nil, +1)
			gins(x86.AMOVL, ncon(0), &t1)
			gc.Patch(p1, gc.Pc)
			gmove(&t1, t)
		}

		return

		// convert via int64.
	case gc.TFLOAT32<<16 | gc.TUINT32,
		gc.TFLOAT64<<16 | gc.TUINT32:
//.........这里部分代码省略.........

作者:tidatid    项目:g   
//.........这里部分代码省略.........
		//warn("gmove: convert float to int not implemented: %N -> %N\n", f, t);
	//return;
	// algorithm is:
	//	if small enough, use native float64 -> int64 conversion.
	//	otherwise, subtract 2^63, convert, and add it back.
	/*
	* float to integer
	 */
	case gc.TFLOAT32<<16 | gc.TINT32,
		gc.TFLOAT64<<16 | gc.TINT32,
		gc.TFLOAT32<<16 | gc.TINT64,
		gc.TFLOAT64<<16 | gc.TINT64,
		gc.TFLOAT32<<16 | gc.TINT16,
		gc.TFLOAT32<<16 | gc.TINT8,
		gc.TFLOAT32<<16 | gc.TUINT16,
		gc.TFLOAT32<<16 | gc.TUINT8,
		gc.TFLOAT64<<16 | gc.TINT16,
		gc.TFLOAT64<<16 | gc.TINT8,
		gc.TFLOAT64<<16 | gc.TUINT16,
		gc.TFLOAT64<<16 | gc.TUINT8,
		gc.TFLOAT32<<16 | gc.TUINT32,
		gc.TFLOAT64<<16 | gc.TUINT32,
		gc.TFLOAT32<<16 | gc.TUINT64,
		gc.TFLOAT64<<16 | gc.TUINT64:
		bignodes()

		var r1 gc.Node
		gc.Regalloc(&r1, gc.Types[ft], f)
		gmove(f, &r1)
		if tt == gc.TUINT64 {
			gc.Regalloc(&r2, gc.Types[gc.TFLOAT64], nil)
			gmove(&bigf, &r2)
			gins(ppc64.AFCMPU, &r1, &r2)
			p1 := (*obj.Prog)(gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TFLOAT64]), nil, +1))
			gins(ppc64.AFSUB, &r2, &r1)
			gc.Patch(p1, gc.Pc)
			gc.Regfree(&r2)
		}

		gc.Regalloc(&r2, gc.Types[gc.TFLOAT64], nil)
		var r3 gc.Node
		gc.Regalloc(&r3, gc.Types[gc.TINT64], t)
		gins(ppc64.AFCTIDZ, &r1, &r2)
		p1 := (*obj.Prog)(gins(ppc64.AFMOVD, &r2, nil))
		p1.To.Type = obj.TYPE_MEM
		p1.To.Reg = ppc64.REGSP
		p1.To.Offset = -8
		p1 = gins(ppc64.AMOVD, nil, &r3)
		p1.From.Type = obj.TYPE_MEM
		p1.From.Reg = ppc64.REGSP
		p1.From.Offset = -8
		gc.Regfree(&r2)
		gc.Regfree(&r1)
		if tt == gc.TUINT64 {
			p1 := (*obj.Prog)(gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TFLOAT64]), nil, +1)) // use CR0 here again
			gc.Nodreg(&r1, gc.Types[gc.TINT64], ppc64.REGTMP)
			gins(ppc64.AMOVD, &bigi, &r1)
			gins(ppc64.AADD, &r1, &r3)
			gc.Patch(p1, gc.Pc)
		}

		gmove(&r3, t)
		gc.Regfree(&r3)
		return

		//warn("gmove: convert int to float not implemented: %N -> %N\n", f, t);


问题


面经


文章

微信
公众号

扫码关注公众号