作者:bibbyflyawa
项目:g
/*
* generate array index into res.
* n might be any size; res is 32-bit.
* returns Prog* to patch to panic call.
*/
func cgenindex(n *gc.Node, res *gc.Node, bounded bool) *obj.Prog {
if !gc.Is64(n.Type) {
gc.Cgen(n, res)
return nil
}
var tmp gc.Node
gc.Tempname(&tmp, gc.Types[gc.TINT64])
gc.Cgen(n, &tmp)
var lo gc.Node
var hi gc.Node
split64(&tmp, &lo, &hi)
gmove(&lo, res)
if bounded {
splitclean()
return nil
}
var n1 gc.Node
gc.Regalloc(&n1, gc.Types[gc.TINT32], nil)
var n2 gc.Node
gc.Regalloc(&n2, gc.Types[gc.TINT32], nil)
var zero gc.Node
gc.Nodconst(&zero, gc.Types[gc.TINT32], 0)
gmove(&hi, &n1)
gmove(&zero, &n2)
gins(arm.ACMP, &n1, &n2)
gc.Regfree(&n2)
gc.Regfree(&n1)
splitclean()
return gc.Gbranch(arm.ABNE, nil, -1)
}
作者:bibbyflyawa
项目:g
func ginscmp(op int, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog {
if gc.Isint[t.Etype] && n1.Op == gc.OLITERAL && n1.Int() == 0 && n2.Op != gc.OLITERAL {
op = gc.Brrev(op)
n1, n2 = n2, n1
}
var r1, r2, g1, g2 gc.Node
gc.Regalloc(&r1, t, n1)
gc.Regalloc(&g1, n1.Type, &r1)
gc.Cgen(n1, &g1)
gmove(&g1, &r1)
if gc.Isint[t.Etype] && n2.Op == gc.OLITERAL && n2.Int() == 0 {
gins(arm.ACMP, &r1, n2)
} else {
gc.Regalloc(&r2, t, n2)
gc.Regalloc(&g2, n1.Type, &r2)
gc.Cgen(n2, &g2)
gmove(&g2, &r2)
gins(optoas(gc.OCMP, t), &r1, &r2)
gc.Regfree(&g2)
gc.Regfree(&r2)
}
gc.Regfree(&g1)
gc.Regfree(&r1)
return gc.Gbranch(optoas(op, t), nil, likely)
}
作者:bibbyflyawa
项目:g
func ginscmp(op int, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog {
if gc.Isint[t.Etype] && n1.Op == gc.OLITERAL && n2.Op != gc.OLITERAL {
// Reverse comparison to place constant last.
op = gc.Brrev(op)
n1, n2 = n2, n1
}
var r1, r2, g1, g2 gc.Node
gc.Regalloc(&r1, t, n1)
gc.Regalloc(&g1, n1.Type, &r1)
gc.Cgen(n1, &g1)
gmove(&g1, &r1)
if gc.Isint[t.Etype] && gc.Isconst(n2, gc.CTINT) {
ginscon2(optoas(gc.OCMP, t), &r1, n2.Int())
} else {
gc.Regalloc(&r2, t, n2)
gc.Regalloc(&g2, n1.Type, &r2)
gc.Cgen(n2, &g2)
gmove(&g2, &r2)
rawgins(optoas(gc.OCMP, t), &r1, &r2)
gc.Regfree(&g2)
gc.Regfree(&r2)
}
gc.Regfree(&g1)
gc.Regfree(&r1)
return gc.Gbranch(optoas(op, t), nil, likely)
}
作者:tidatid
项目:g
/*
* generate an addressable node in res, containing the value of n.
* n is an array index, and might be any size; res width is <= 32-bit.
* returns Prog* to patch to panic call.
*/
func igenindex(n *gc.Node, res *gc.Node, bounded bool) *obj.Prog {
if !gc.Is64(n.Type) {
if n.Addable != 0 {
// nothing to do.
*res = *n
} else {
gc.Tempname(res, gc.Types[gc.TUINT32])
gc.Cgen(n, res)
}
return nil
}
var tmp gc.Node
gc.Tempname(&tmp, gc.Types[gc.TINT64])
gc.Cgen(n, &tmp)
var lo gc.Node
var hi gc.Node
split64(&tmp, &lo, &hi)
gc.Tempname(res, gc.Types[gc.TUINT32])
gmove(&lo, res)
if bounded {
splitclean()
return nil
}
var zero gc.Node
gc.Nodconst(&zero, gc.Types[gc.TINT32], 0)
gins(x86.ACMPL, &hi, &zero)
splitclean()
return gc.Gbranch(x86.AJNE, nil, +1)
}
作者:bibbyflyawa
项目:g
/*
* generate high multiply
* res = (nl * nr) >> wordsize
*/
func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) {
if nl.Ullman < nr.Ullman {
tmp := nl
nl = nr
nr = tmp
}
t := nl.Type
w := int(t.Width * 8)
var n1 gc.Node
gc.Regalloc(&n1, t, res)
gc.Cgen(nl, &n1)
var n2 gc.Node
gc.Regalloc(&n2, t, nil)
gc.Cgen(nr, &n2)
switch gc.Simtype[t.Etype] {
case gc.TINT8,
gc.TINT16:
gins(optoas(gc.OMUL, t), &n2, &n1)
gshift(arm.AMOVW, &n1, arm.SHIFT_AR, int32(w), &n1)
case gc.TUINT8,
gc.TUINT16:
gins(optoas(gc.OMUL, t), &n2, &n1)
gshift(arm.AMOVW, &n1, arm.SHIFT_LR, int32(w), &n1)
// perform a long multiplication.
case gc.TINT32,
gc.TUINT32:
var p *obj.Prog
if gc.Issigned[t.Etype] {
p = gins(arm.AMULL, &n2, nil)
} else {
p = gins(arm.AMULLU, &n2, nil)
}
// n2 * n1 -> (n1 n2)
p.Reg = n1.Reg
p.To.Type = obj.TYPE_REGREG
p.To.Reg = n1.Reg
p.To.Offset = int64(n2.Reg)
default:
gc.Fatal("cgen_hmul %v", t)
}
gc.Cgen(&n1, res)
gc.Regfree(&n1)
gc.Regfree(&n2)
}
作者:xslonepiec
项目:goio
/*
* n is a 64-bit value. fill in lo and hi to refer to its 32-bit halves.
*/
func split64(n *gc.Node, lo *gc.Node, hi *gc.Node) {
if !gc.Is64(n.Type) {
gc.Fatal("split64 %v", gc.Tconv(n.Type, 0))
}
if nsclean >= len(sclean) {
gc.Fatal("split64 clean")
}
sclean[nsclean].Op = gc.OEMPTY
nsclean++
switch n.Op {
default:
switch n.Op {
default:
var n1 gc.Node
if !dotaddable(n, &n1) {
gc.Igen(n, &n1, nil)
sclean[nsclean-1] = n1
}
n = &n1
case gc.ONAME:
if n.Class == gc.PPARAMREF {
var n1 gc.Node
gc.Cgen(n.Heapaddr, &n1)
sclean[nsclean-1] = n1
n = &n1
}
// nothing
case gc.OINDREG:
break
}
*lo = *n
*hi = *n
lo.Type = gc.Types[gc.TUINT32]
if n.Type.Etype == gc.TINT64 {
hi.Type = gc.Types[gc.TINT32]
} else {
hi.Type = gc.Types[gc.TUINT32]
}
hi.Xoffset += 4
case gc.OLITERAL:
var n1 gc.Node
gc.Convconst(&n1, n.Type, &n.Val)
i := gc.Mpgetfix(n1.Val.U.Xval)
gc.Nodconst(lo, gc.Types[gc.TUINT32], int64(uint32(i)))
i >>= 32
if n.Type.Etype == gc.TINT64 {
gc.Nodconst(hi, gc.Types[gc.TINT32], int64(int32(i)))
} else {
gc.Nodconst(hi, gc.Types[gc.TUINT32], int64(uint32(i)))
}
}
}
作者:tidatid
项目:g
/*
* generate floating-point operation.
*/
func cgen_float(n *gc.Node, res *gc.Node) {
nl := n.Left
switch n.Op {
case gc.OEQ,
gc.ONE,
gc.OLT,
gc.OLE,
gc.OGE:
p1 := gc.Gbranch(obj.AJMP, nil, 0)
p2 := gc.Pc
gmove(gc.Nodbool(true), res)
p3 := gc.Gbranch(obj.AJMP, nil, 0)
gc.Patch(p1, gc.Pc)
gc.Bgen(n, true, 0, p2)
gmove(gc.Nodbool(false), res)
gc.Patch(p3, gc.Pc)
return
case gc.OPLUS:
gc.Cgen(nl, res)
return
case gc.OCONV:
if gc.Eqtype(n.Type, nl.Type) || gc.Noconv(n.Type, nl.Type) {
gc.Cgen(nl, res)
return
}
var n2 gc.Node
gc.Tempname(&n2, n.Type)
var n1 gc.Node
gc.Mgen(nl, &n1, res)
gmove(&n1, &n2)
gmove(&n2, res)
gc.Mfree(&n1)
return
}
if gc.Thearch.Use387 {
cgen_float387(n, res)
} else {
cgen_floatsse(n, res)
}
}
作者:xslonepiec
项目:goio
/*
* generate byte multiply:
* res = nl * nr
* there is no 2-operand byte multiply instruction so
* we do a full-width multiplication and truncate afterwards.
*/
func cgen_bmul(op int, nl *gc.Node, nr *gc.Node, res *gc.Node) bool {
if optoas(op, nl.Type) != x86.AIMULB {
return false
}
// largest ullman on left.
if nl.Ullman < nr.Ullman {
tmp := nl
nl = nr
nr = tmp
}
// generate operands in "8-bit" registers.
var n1b gc.Node
gc.Regalloc(&n1b, nl.Type, res)
gc.Cgen(nl, &n1b)
var n2b gc.Node
gc.Regalloc(&n2b, nr.Type, nil)
gc.Cgen(nr, &n2b)
// perform full-width multiplication.
t := gc.Types[gc.TUINT64]
if gc.Issigned[nl.Type.Etype] {
t = gc.Types[gc.TINT64]
}
var n1 gc.Node
gc.Nodreg(&n1, t, int(n1b.Reg))
var n2 gc.Node
gc.Nodreg(&n2, t, int(n2b.Reg))
a := optoas(op, t)
gins(a, &n2, &n1)
// truncate.
gmove(&n1, res)
gc.Regfree(&n1b)
gc.Regfree(&n2b)
return true
}
作者:tidatid
项目:g
// floating-point. 387 (not SSE2)
func cgen_float387(n *gc.Node, res *gc.Node) {
var f0 gc.Node
var f1 gc.Node
nl := n.Left
nr := n.Right
gc.Nodreg(&f0, nl.Type, x86.REG_F0)
gc.Nodreg(&f1, n.Type, x86.REG_F0+1)
if nr != nil {
// binary
if nl.Ullman >= nr.Ullman {
gc.Cgen(nl, &f0)
if nr.Addable != 0 {
gins(foptoas(int(n.Op), n.Type, 0), nr, &f0)
} else {
gc.Cgen(nr, &f0)
gins(foptoas(int(n.Op), n.Type, Fpop), &f0, &f1)
}
} else {
gc.Cgen(nr, &f0)
if nl.Addable != 0 {
gins(foptoas(int(n.Op), n.Type, Frev), nl, &f0)
} else {
gc.Cgen(nl, &f0)
gins(foptoas(int(n.Op), n.Type, Frev|Fpop), &f0, &f1)
}
}
gmove(&f0, res)
return
}
// unary
gc.Cgen(nl, &f0)
if n.Op != gc.OCONV && n.Op != gc.OPLUS {
gins(foptoas(int(n.Op), n.Type, 0), nil, nil)
}
gmove(&f0, res)
return
}
作者:tidatid
项目:g
/*
* generate high multiply:
* res = (nl*nr) >> width
*/
func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) {
var n1 gc.Node
var n2 gc.Node
var ax gc.Node
var dx gc.Node
t := nl.Type
a := optoas(gc.OHMUL, t)
// gen nl in n1.
gc.Tempname(&n1, t)
gc.Cgen(nl, &n1)
// gen nr in n2.
gc.Regalloc(&n2, t, res)
gc.Cgen(nr, &n2)
// multiply.
gc.Nodreg(&ax, t, x86.REG_AX)
gmove(&n2, &ax)
gins(a, &n1, nil)
gc.Regfree(&n2)
if t.Width == 1 {
// byte multiply behaves differently.
gc.Nodreg(&ax, t, x86.REG_AH)
gc.Nodreg(&dx, t, x86.REG_DX)
gmove(&ax, &dx)
}
gc.Nodreg(&dx, t, x86.REG_DX)
gmove(&dx, res)
}
作者:tidatid
项目:g
/*
* generate byte multiply:
* res = nl * nr
* there is no 2-operand byte multiply instruction so
* we do a full-width multiplication and truncate afterwards.
*/
func cgen_bmul(op int, nl *gc.Node, nr *gc.Node, res *gc.Node) bool {
if optoas(op, nl.Type) != x86.AIMULB {
return false
}
// copy from byte to full registers
t := gc.Types[gc.TUINT32]
if gc.Issigned[nl.Type.Etype] {
t = gc.Types[gc.TINT32]
}
// largest ullman on left.
if nl.Ullman < nr.Ullman {
tmp := nl
nl = nr
nr = tmp
}
var nt gc.Node
gc.Tempname(&nt, nl.Type)
gc.Cgen(nl, &nt)
var n1 gc.Node
gc.Regalloc(&n1, t, res)
gc.Cgen(nr, &n1)
var n2 gc.Node
gc.Regalloc(&n2, t, nil)
gmove(&nt, &n2)
a := optoas(op, t)
gins(a, &n2, &n1)
gc.Regfree(&n2)
gmove(&n1, res)
gc.Regfree(&n1)
return true
}
作者:xslonepiec
项目:goio
func gencmp0(n *gc.Node, t *gc.Type, o int, likely int, to *obj.Prog) {
var n1 gc.Node
gc.Regalloc(&n1, t, nil)
gc.Cgen(n, &n1)
a := optoas(gc.OCMP, t)
if a != arm.ACMP {
var n2 gc.Node
gc.Nodconst(&n2, t, 0)
var n3 gc.Node
gc.Regalloc(&n3, t, nil)
gmove(&n2, &n3)
gins(a, &n1, &n3)
gc.Regfree(&n3)
} else {
gins(arm.ATST, &n1, nil)
}
a = optoas(o, t)
gc.Patch(gc.Gbranch(a, t, likely), to)
gc.Regfree(&n1)
}
作者:tidatid
项目:g
/*
* generate division.
* generates one of:
* res = nl / nr
* res = nl % nr
* according to op.
*/
func dodiv(op int, nl *gc.Node, nr *gc.Node, res *gc.Node) {
// Have to be careful about handling
// most negative int divided by -1 correctly.
// The hardware will generate undefined result.
// Also need to explicitly trap on division on zero,
// the hardware will silently generate undefined result.
// DIVW will leave unpredicable result in higher 32-bit,
// so always use DIVD/DIVDU.
t := nl.Type
t0 := t
check := 0
if gc.Issigned[t.Etype] {
check = 1
if gc.Isconst(nl, gc.CTINT) && gc.Mpgetfix(nl.Val.U.Xval) != -(1<<uint64(t.Width*8-1)) {
check = 0
} else if gc.Isconst(nr, gc.CTINT) && gc.Mpgetfix(nr.Val.U.Xval) != -1 {
check = 0
}
}
if t.Width < 8 {
if gc.Issigned[t.Etype] {
t = gc.Types[gc.TINT64]
} else {
t = gc.Types[gc.TUINT64]
}
check = 0
}
a := optoas(gc.ODIV, t)
var tl gc.Node
gc.Regalloc(&tl, t0, nil)
var tr gc.Node
gc.Regalloc(&tr, t0, nil)
if nl.Ullman >= nr.Ullman {
gc.Cgen(nl, &tl)
gc.Cgen(nr, &tr)
} else {
gc.Cgen(nr, &tr)
gc.Cgen(nl, &tl)
}
if t != t0 {
// Convert
tl2 := tl
tr2 := tr
tl.Type = t
tr.Type = t
gmove(&tl2, &tl)
gmove(&tr2, &tr)
}
// Handle divide-by-zero panic.
p1 := gins(optoas(gc.OCMP, t), &tr, nil)
p1.To.Type = obj.TYPE_REG
p1.To.Reg = ppc64.REGZERO
p1 = gc.Gbranch(optoas(gc.ONE, t), nil, +1)
if panicdiv == nil {
panicdiv = gc.Sysfunc("panicdivide")
}
gc.Ginscall(panicdiv, -1)
gc.Patch(p1, gc.Pc)
var p2 *obj.Prog
if check != 0 {
var nm1 gc.Node
gc.Nodconst(&nm1, t, -1)
gins(optoas(gc.OCMP, t), &tr, &nm1)
p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
if op == gc.ODIV {
// a / (-1) is -a.
gins(optoas(gc.OMINUS, t), nil, &tl)
gmove(&tl, res)
} else {
// a % (-1) is 0.
var nz gc.Node
gc.Nodconst(&nz, t, 0)
gmove(&nz, res)
}
p2 = gc.Gbranch(obj.AJMP, nil, 0)
gc.Patch(p1, gc.Pc)
}
p1 = gins(a, &tr, &tl)
if op == gc.ODIV {
gc.Regfree(&tr)
//.........这里部分代码省略.........
作者:xslonepiec
项目:goio
/*
* attempt to generate 64-bit
* res = n
* return 1 on success, 0 if op not handled.
*/
func cgen64(n *gc.Node, res *gc.Node) {
if res.Op != gc.OINDREG && res.Op != gc.ONAME {
gc.Dump("n", n)
gc.Dump("res", res)
gc.Fatal("cgen64 %v of %v", gc.Oconv(int(n.Op), 0), gc.Oconv(int(res.Op), 0))
}
switch n.Op {
default:
gc.Fatal("cgen64 %v", gc.Oconv(int(n.Op), 0))
case gc.OMINUS:
gc.Cgen(n.Left, res)
var hi1 gc.Node
var lo1 gc.Node
split64(res, &lo1, &hi1)
gins(x86.ANEGL, nil, &lo1)
gins(x86.AADCL, ncon(0), &hi1)
gins(x86.ANEGL, nil, &hi1)
splitclean()
return
case gc.OCOM:
gc.Cgen(n.Left, res)
var lo1 gc.Node
var hi1 gc.Node
split64(res, &lo1, &hi1)
gins(x86.ANOTL, nil, &lo1)
gins(x86.ANOTL, nil, &hi1)
splitclean()
return
// binary operators.
// common setup below.
case gc.OADD,
gc.OSUB,
gc.OMUL,
gc.OLROT,
gc.OLSH,
gc.ORSH,
gc.OAND,
gc.OOR,
gc.OXOR:
break
}
l := n.Left
r := n.Right
if !l.Addable {
var t1 gc.Node
gc.Tempname(&t1, l.Type)
gc.Cgen(l, &t1)
l = &t1
}
if r != nil && !r.Addable {
var t2 gc.Node
gc.Tempname(&t2, r.Type)
gc.Cgen(r, &t2)
r = &t2
}
var ax gc.Node
gc.Nodreg(&ax, gc.Types[gc.TINT32], x86.REG_AX)
var cx gc.Node
gc.Nodreg(&cx, gc.Types[gc.TINT32], x86.REG_CX)
var dx gc.Node
gc.Nodreg(&dx, gc.Types[gc.TINT32], x86.REG_DX)
// Setup for binary operation.
var hi1 gc.Node
var lo1 gc.Node
split64(l, &lo1, &hi1)
var lo2 gc.Node
var hi2 gc.Node
if gc.Is64(r.Type) {
split64(r, &lo2, &hi2)
}
// Do op. Leave result in DX:AX.
switch n.Op {
// TODO: Constants
case gc.OADD:
gins(x86.AMOVL, &lo1, &ax)
gins(x86.AMOVL, &hi1, &dx)
gins(x86.AADDL, &lo2, &ax)
gins(x86.AADCL, &hi2, &dx)
// TODO: Constants.
case gc.OSUB:
gins(x86.AMOVL, &lo1, &ax)
gins(x86.AMOVL, &hi1, &dx)
//.........这里部分代码省略.........
作者:bibbyflyawa
项目:g
//.........这里部分代码省略.........
x86.AADDW,
x86.AADDL,
x86.AADDQ,
x86.ASUBB,
x86.ASUBW,
x86.ASUBL,
x86.ASUBQ,
x86.AANDB,
x86.AANDW,
x86.AANDL,
x86.AANDQ,
x86.AORB,
x86.AORW,
x86.AORL,
x86.AORQ,
x86.AXORB,
x86.AXORW,
x86.AXORL,
x86.AXORQ,
x86.AINCB,
x86.AINCW,
x86.AINCL,
x86.AINCQ,
x86.ADECB,
x86.ADECW,
x86.ADECL,
x86.ADECQ,
x86.AMOVB,
x86.AMOVW,
x86.AMOVL,
x86.AMOVQ:
break
}
cleani += 2
reg := &clean[cleani-1]
reg1 := &clean[cleani-2]
reg.Op = gc.OEMPTY
reg1.Op = gc.OEMPTY
gc.Naddr(a, n)
return true
case gc.ODOT,
gc.ODOTPTR:
cleani += 2
reg := &clean[cleani-1]
reg1 := &clean[cleani-2]
reg.Op = gc.OEMPTY
reg1.Op = gc.OEMPTY
var nn *gc.Node
var oary [10]int64
o := gc.Dotoffset(n, oary[:], &nn)
if nn == nil {
sudoclean()
return false
}
if nn.Addable && o == 1 && oary[0] >= 0 {
// directly addressable set of DOTs
n1 := *nn
n1.Type = n.Type
n1.Xoffset += oary[0]
gc.Naddr(a, &n1)
return true
}
gc.Regalloc(reg, gc.Types[gc.Tptr], nil)
n1 := *reg
n1.Op = gc.OINDREG
if oary[0] >= 0 {
gc.Agen(nn, reg)
n1.Xoffset = oary[0]
} else {
gc.Cgen(nn, reg)
gc.Cgen_checknil(reg)
n1.Xoffset = -(oary[0] + 1)
}
for i := 1; i < o; i++ {
if oary[i] >= 0 {
gc.Fatal("can't happen")
}
gins(movptr, &n1, reg)
gc.Cgen_checknil(reg)
n1.Xoffset = -(oary[i] + 1)
}
a.Type = obj.TYPE_NONE
a.Index = obj.TYPE_NONE
gc.Fixlargeoffset(&n1)
gc.Naddr(a, &n1)
return true
case gc.OINDEX:
return false
}
return false
}
作者:tidatid
项目:g
/*
* generate shift according to op, one of:
* res = nl << nr
* res = nl >> nr
*/
func cgen_shift(op int, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) {
if nl.Type.Width > 4 {
gc.Fatal("cgen_shift %v", gc.Tconv(nl.Type, 0))
}
w := int(nl.Type.Width * 8)
a := optoas(op, nl.Type)
if nr.Op == gc.OLITERAL {
var n2 gc.Node
gc.Tempname(&n2, nl.Type)
gc.Cgen(nl, &n2)
var n1 gc.Node
gc.Regalloc(&n1, nl.Type, res)
gmove(&n2, &n1)
sc := uint64(gc.Mpgetfix(nr.Val.U.Xval))
if sc >= uint64(nl.Type.Width*8) {
// large shift gets 2 shifts by width-1
gins(a, ncon(uint32(w)-1), &n1)
gins(a, ncon(uint32(w)-1), &n1)
} else {
gins(a, nr, &n1)
}
gmove(&n1, res)
gc.Regfree(&n1)
return
}
var oldcx gc.Node
var cx gc.Node
gc.Nodreg(&cx, gc.Types[gc.TUINT32], x86.REG_CX)
if reg[x86.REG_CX] > 1 && !gc.Samereg(&cx, res) {
gc.Tempname(&oldcx, gc.Types[gc.TUINT32])
gmove(&cx, &oldcx)
}
var n1 gc.Node
var nt gc.Node
if nr.Type.Width > 4 {
gc.Tempname(&nt, nr.Type)
n1 = nt
} else {
gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX)
gc.Regalloc(&n1, nr.Type, &n1) // to hold the shift type in CX
}
var n2 gc.Node
if gc.Samereg(&cx, res) {
gc.Regalloc(&n2, nl.Type, nil)
} else {
gc.Regalloc(&n2, nl.Type, res)
}
if nl.Ullman >= nr.Ullman {
gc.Cgen(nl, &n2)
gc.Cgen(nr, &n1)
} else {
gc.Cgen(nr, &n1)
gc.Cgen(nl, &n2)
}
// test and fix up large shifts
if bounded {
if nr.Type.Width > 4 {
// delayed reg alloc
gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX)
gc.Regalloc(&n1, gc.Types[gc.TUINT32], &n1) // to hold the shift type in CX
var lo gc.Node
var hi gc.Node
split64(&nt, &lo, &hi)
gmove(&lo, &n1)
splitclean()
}
} else {
var p1 *obj.Prog
if nr.Type.Width > 4 {
// delayed reg alloc
gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX)
gc.Regalloc(&n1, gc.Types[gc.TUINT32], &n1) // to hold the shift type in CX
var lo gc.Node
var hi gc.Node
split64(&nt, &lo, &hi)
gmove(&lo, &n1)
gins(optoas(gc.OCMP, gc.Types[gc.TUINT32]), &hi, ncon(0))
p2 := gc.Gbranch(optoas(gc.ONE, gc.Types[gc.TUINT32]), nil, +1)
gins(optoas(gc.OCMP, gc.Types[gc.TUINT32]), &n1, ncon(uint32(w)))
p1 = gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1)
splitclean()
gc.Patch(p2, gc.Pc)
} else {
gins(optoas(gc.OCMP, nr.Type), &n1, ncon(uint32(w)))
p1 = gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1)
//.........这里部分代码省略.........
作者:xslonepiec
项目:goio
/*
* generate shift according to op, one of:
* res = nl << nr
* res = nl >> nr
*/
func cgen_shift(op int, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) {
a := optoas(op, nl.Type)
if nr.Op == gc.OLITERAL {
var n1 gc.Node
gc.Regalloc(&n1, nl.Type, res)
gc.Cgen(nl, &n1)
sc := uint64(gc.Mpgetfix(nr.Val.U.Xval))
if sc >= uint64(nl.Type.Width*8) {
// large shift gets 2 shifts by width-1
var n3 gc.Node
gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1)
gins(a, &n3, &n1)
gins(a, &n3, &n1)
} else {
gins(a, nr, &n1)
}
gmove(&n1, res)
gc.Regfree(&n1)
return
}
if nl.Ullman >= gc.UINF {
var n4 gc.Node
gc.Tempname(&n4, nl.Type)
gc.Cgen(nl, &n4)
nl = &n4
}
if nr.Ullman >= gc.UINF {
var n5 gc.Node
gc.Tempname(&n5, nr.Type)
gc.Cgen(nr, &n5)
nr = &n5
}
rcx := int(reg[x86.REG_CX])
var n1 gc.Node
gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX)
// Allow either uint32 or uint64 as shift type,
// to avoid unnecessary conversion from uint32 to uint64
// just to do the comparison.
tcount := gc.Types[gc.Simtype[nr.Type.Etype]]
if tcount.Etype < gc.TUINT32 {
tcount = gc.Types[gc.TUINT32]
}
gc.Regalloc(&n1, nr.Type, &n1) // to hold the shift type in CX
var n3 gc.Node
gc.Regalloc(&n3, tcount, &n1) // to clear high bits of CX
var cx gc.Node
gc.Nodreg(&cx, gc.Types[gc.TUINT64], x86.REG_CX)
var oldcx gc.Node
if rcx > 0 && !gc.Samereg(&cx, res) {
gc.Regalloc(&oldcx, gc.Types[gc.TUINT64], nil)
gmove(&cx, &oldcx)
}
cx.Type = tcount
var n2 gc.Node
if gc.Samereg(&cx, res) {
gc.Regalloc(&n2, nl.Type, nil)
} else {
gc.Regalloc(&n2, nl.Type, res)
}
if nl.Ullman >= nr.Ullman {
gc.Cgen(nl, &n2)
gc.Cgen(nr, &n1)
gmove(&n1, &n3)
} else {
gc.Cgen(nr, &n1)
gmove(&n1, &n3)
gc.Cgen(nl, &n2)
}
gc.Regfree(&n3)
// test and fix up large shifts
if !bounded {
gc.Nodconst(&n3, tcount, nl.Type.Width*8)
gins(optoas(gc.OCMP, tcount), &n1, &n3)
p1 := gc.Gbranch(optoas(gc.OLT, tcount), nil, +1)
if op == gc.ORSH && gc.Issigned[nl.Type.Etype] {
gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1)
gins(a, &n3, &n2)
} else {
gc.Nodconst(&n3, nl.Type, 0)
gmove(&n3, &n2)
}
//.........这里部分代码省略.........
作者:bibbyflyawa
项目:g
/*
* generate shift according to op, one of:
* res = nl << nr
* res = nl >> nr
*/
func cgen_shift(op int, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) {
if nl.Type.Width > 4 {
gc.Fatal("cgen_shift %v", nl.Type)
}
w := int(nl.Type.Width * 8)
if op == gc.OLROT {
v := nr.Int()
var n1 gc.Node
gc.Regalloc(&n1, nl.Type, res)
if w == 32 {
gc.Cgen(nl, &n1)
gshift(arm.AMOVW, &n1, arm.SHIFT_RR, int32(w)-int32(v), &n1)
} else {
var n2 gc.Node
gc.Regalloc(&n2, nl.Type, nil)
gc.Cgen(nl, &n2)
gshift(arm.AMOVW, &n2, arm.SHIFT_LL, int32(v), &n1)
gshift(arm.AORR, &n2, arm.SHIFT_LR, int32(w)-int32(v), &n1)
gc.Regfree(&n2)
// Ensure sign/zero-extended result.
gins(optoas(gc.OAS, nl.Type), &n1, &n1)
}
gmove(&n1, res)
gc.Regfree(&n1)
return
}
if nr.Op == gc.OLITERAL {
var n1 gc.Node
gc.Regalloc(&n1, nl.Type, res)
gc.Cgen(nl, &n1)
sc := uint64(nr.Int())
if sc == 0 {
} else // nothing to do
if sc >= uint64(nl.Type.Width*8) {
if op == gc.ORSH && gc.Issigned[nl.Type.Etype] {
gshift(arm.AMOVW, &n1, arm.SHIFT_AR, int32(w), &n1)
} else {
gins(arm.AEOR, &n1, &n1)
}
} else {
if op == gc.ORSH && gc.Issigned[nl.Type.Etype] {
gshift(arm.AMOVW, &n1, arm.SHIFT_AR, int32(sc), &n1)
} else if op == gc.ORSH {
gshift(arm.AMOVW, &n1, arm.SHIFT_LR, int32(sc), &n1) // OLSH
} else {
gshift(arm.AMOVW, &n1, arm.SHIFT_LL, int32(sc), &n1)
}
}
if w < 32 && op == gc.OLSH {
gins(optoas(gc.OAS, nl.Type), &n1, &n1)
}
gmove(&n1, res)
gc.Regfree(&n1)
return
}
tr := nr.Type
var t gc.Node
var n1 gc.Node
var n2 gc.Node
var n3 gc.Node
if tr.Width > 4 {
var nt gc.Node
gc.Tempname(&nt, nr.Type)
if nl.Ullman >= nr.Ullman {
gc.Regalloc(&n2, nl.Type, res)
gc.Cgen(nl, &n2)
gc.Cgen(nr, &nt)
n1 = nt
} else {
gc.Cgen(nr, &nt)
gc.Regalloc(&n2, nl.Type, res)
gc.Cgen(nl, &n2)
}
var hi gc.Node
var lo gc.Node
split64(&nt, &lo, &hi)
gc.Regalloc(&n1, gc.Types[gc.TUINT32], nil)
gc.Regalloc(&n3, gc.Types[gc.TUINT32], nil)
gmove(&lo, &n1)
gmove(&hi, &n3)
splitclean()
gins(arm.ATST, &n3, nil)
gc.Nodconst(&t, gc.Types[gc.TUINT32], int64(w))
p1 := gins(arm.AMOVW, &t, &n1)
p1.Scond = arm.C_SCOND_NE
tr = gc.Types[gc.TUINT32]
gc.Regfree(&n3)
//.........这里部分代码省略.........
作者:xslonepiec
项目:goio
/*
* generate division.
* generates one of:
* res = nl / nr
* res = nl % nr
* according to op.
*/
func dodiv(op int, nl *gc.Node, nr *gc.Node, res *gc.Node) {
// Have to be careful about handling
// most negative int divided by -1 correctly.
// The hardware will trap.
// Also the byte divide instruction needs AH,
// which we otherwise don't have to deal with.
// Easiest way to avoid for int8, int16: use int32.
// For int32 and int64, use explicit test.
// Could use int64 hw for int32.
t := nl.Type
t0 := t
check := 0
if gc.Issigned[t.Etype] {
check = 1
if gc.Isconst(nl, gc.CTINT) && gc.Mpgetfix(nl.Val.U.Xval) != -(1<<uint64(t.Width*8-1)) {
check = 0
} else if gc.Isconst(nr, gc.CTINT) && gc.Mpgetfix(nr.Val.U.Xval) != -1 {
check = 0
}
}
if t.Width < 4 {
if gc.Issigned[t.Etype] {
t = gc.Types[gc.TINT32]
} else {
t = gc.Types[gc.TUINT32]
}
check = 0
}
a := optoas(op, t)
var n3 gc.Node
gc.Regalloc(&n3, t0, nil)
var ax gc.Node
var oldax gc.Node
if nl.Ullman >= nr.Ullman {
savex(x86.REG_AX, &ax, &oldax, res, t0)
gc.Cgen(nl, &ax)
gc.Regalloc(&ax, t0, &ax) // mark ax live during cgen
gc.Cgen(nr, &n3)
gc.Regfree(&ax)
} else {
gc.Cgen(nr, &n3)
savex(x86.REG_AX, &ax, &oldax, res, t0)
gc.Cgen(nl, &ax)
}
if t != t0 {
// Convert
ax1 := ax
n31 := n3
ax.Type = t
n3.Type = t
gmove(&ax1, &ax)
gmove(&n31, &n3)
}
var n4 gc.Node
if gc.Nacl {
// Native Client does not relay the divide-by-zero trap
// to the executing program, so we must insert a check
// for ourselves.
gc.Nodconst(&n4, t, 0)
gins(optoas(gc.OCMP, t), &n3, &n4)
p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
if panicdiv == nil {
panicdiv = gc.Sysfunc("panicdivide")
}
gc.Ginscall(panicdiv, -1)
gc.Patch(p1, gc.Pc)
}
var p2 *obj.Prog
if check != 0 {
gc.Nodconst(&n4, t, -1)
gins(optoas(gc.OCMP, t), &n3, &n4)
p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
if op == gc.ODIV {
// a / (-1) is -a.
gins(optoas(gc.OMINUS, t), nil, &ax)
gmove(&ax, res)
} else {
// a % (-1) is 0.
gc.Nodconst(&n4, t, 0)
gmove(&n4, res)
}
//.........这里部分代码省略.........
作者:bibbyflyawa
项目:g
func clearfat(nl *gc.Node) {
/* clear a fat object */
if gc.Debug['g'] != 0 {
gc.Dump("\nclearfat", nl)
}
w := uint32(nl.Type.Width)
// Avoid taking the address for simple enough types.
if gc.Componentgen(nil, nl) {
return
}
c := w % 4 // bytes
q := w / 4 // quads
var r0 gc.Node
r0.Op = gc.OREGISTER
r0.Reg = arm.REG_R0
var r1 gc.Node
r1.Op = gc.OREGISTER
r1.Reg = arm.REG_R1
var dst gc.Node
gc.Regalloc(&dst, gc.Types[gc.Tptr], &r1)
gc.Agen(nl, &dst)
var nc gc.Node
gc.Nodconst(&nc, gc.Types[gc.TUINT32], 0)
var nz gc.Node
gc.Regalloc(&nz, gc.Types[gc.TUINT32], &r0)
gc.Cgen(&nc, &nz)
if q > 128 {
var end gc.Node
gc.Regalloc(&end, gc.Types[gc.Tptr], nil)
p := gins(arm.AMOVW, &dst, &end)
p.From.Type = obj.TYPE_ADDR
p.From.Offset = int64(q) * 4
p = gins(arm.AMOVW, &nz, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = 4
p.Scond |= arm.C_PBIT
pl := p
p = gins(arm.ACMP, &dst, nil)
raddr(&end, p)
gc.Patch(gc.Gbranch(arm.ABNE, nil, 0), pl)
gc.Regfree(&end)
} else if q >= 4 && !gc.Nacl {
f := gc.Sysfunc("duffzero")
p := gins(obj.ADUFFZERO, nil, f)
gc.Afunclit(&p.To, f)
// 4 and 128 = magic constants: see ../../runtime/asm_arm.s
p.To.Offset = 4 * (128 - int64(q))
} else {
var p *obj.Prog
for q > 0 {
p = gins(arm.AMOVW, &nz, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = 4
p.Scond |= arm.C_PBIT
//print("1. %P\n", p);
q--
}
}
var p *obj.Prog
for c > 0 {
p = gins(arm.AMOVB, &nz, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = 1
p.Scond |= arm.C_PBIT
//print("2. %P\n", p);
c--
}
gc.Regfree(&dst)
gc.Regfree(&nz)
}