作者:achand
项目:g
// push pushes v onto the floating-point stack. v must be in a register.
func push(s *gc.SSAGenState, v *ssa.Value) {
p := gc.Prog(x86.AFMOVD)
p.From.Type = obj.TYPE_REG
p.From.Reg = s.SSEto387[v.Reg()]
p.To.Type = obj.TYPE_REG
p.To.Reg = x86.REG_F0
}
作者:achand
项目:g
func ssaGenISEL(v *ssa.Value, cr int64, r1, r2 int16) {
r := v.Reg()
p := gc.Prog(ppc64.AISEL)
p.To.Type = obj.TYPE_REG
p.To.Reg = r
p.Reg = r1
p.From3 = &obj.Addr{Type: obj.TYPE_REG, Reg: r2}
p.From.Type = obj.TYPE_CONST
p.From.Offset = cr
}
作者:achand
项目:g
// popAndSave pops a value off of the floating-point stack and stores
// it in the reigster assigned to v.
func popAndSave(s *gc.SSAGenState, v *ssa.Value) {
r := v.Reg()
if _, ok := s.SSEto387[r]; ok {
// Pop value, write to correct register.
p := gc.Prog(x86.AFMOVDP)
p.From.Type = obj.TYPE_REG
p.From.Reg = x86.REG_F0
p.To.Type = obj.TYPE_REG
p.To.Reg = s.SSEto387[v.Reg()] + 1
} else {
// Don't actually pop value. This 387 register is now the
// new home for the not-yet-assigned-a-home SSE register.
// Increase the register mapping of all other registers by one.
for rSSE, r387 := range s.SSEto387 {
s.SSEto387[rSSE] = r387 + 1
}
s.SSEto387[r] = x86.REG_F0
}
}
作者:achand
项目:g
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
s.SetLineno(v.Line)
switch v.Op {
case ssa.OpInitMem:
// memory arg needs no code
case ssa.OpArg:
// input args need no code
case ssa.OpSP, ssa.OpSB, ssa.OpGetG:
// nothing to do
case ssa.OpCopy, ssa.OpARMMOVWconvert, ssa.OpARMMOVWreg:
if v.Type.IsMemory() {
return
}
x := v.Args[0].Reg()
y := v.Reg()
if x == y {
return
}
as := arm.AMOVW
if v.Type.IsFloat() {
switch v.Type.Size() {
case 4:
as = arm.AMOVF
case 8:
as = arm.AMOVD
default:
panic("bad float size")
}
}
p := gc.Prog(as)
p.From.Type = obj.TYPE_REG
p.From.Reg = x
p.To.Type = obj.TYPE_REG
p.To.Reg = y
case ssa.OpARMMOVWnop:
if v.Reg() != v.Args[0].Reg() {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
// nothing to do
case ssa.OpLoadReg:
if v.Type.IsFlags() {
v.Fatalf("load flags not implemented: %v", v.LongString())
return
}
p := gc.Prog(loadByType(v.Type))
gc.AddrAuto(&p.From, v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpPhi:
gc.CheckLoweredPhi(v)
case ssa.OpStoreReg:
if v.Type.IsFlags() {
v.Fatalf("store flags not implemented: %v", v.LongString())
return
}
p := gc.Prog(storeByType(v.Type))
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
gc.AddrAuto(&p.To, v)
case ssa.OpARMUDIVrtcall:
p := gc.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = obj.Linklookup(gc.Ctxt, "udiv", 0)
case ssa.OpARMADD,
ssa.OpARMADC,
ssa.OpARMSUB,
ssa.OpARMSBC,
ssa.OpARMRSB,
ssa.OpARMAND,
ssa.OpARMOR,
ssa.OpARMXOR,
ssa.OpARMBIC,
ssa.OpARMMUL,
ssa.OpARMADDF,
ssa.OpARMADDD,
ssa.OpARMSUBF,
ssa.OpARMSUBD,
ssa.OpARMMULF,
ssa.OpARMMULD,
ssa.OpARMDIVF,
ssa.OpARMDIVD:
r := v.Reg()
r1 := v.Args[0].Reg()
r2 := v.Args[1].Reg()
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = r2
p.Reg = r1
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpARMADDS,
ssa.OpARMSUBS:
r := v.Reg0()
r1 := v.Args[0].Reg()
r2 := v.Args[1].Reg()
p := gc.Prog(v.Op.Asm())
p.Scond = arm.C_SBIT
p.From.Type = obj.TYPE_REG
p.From.Reg = r2
//.........这里部分代码省略.........
作者:Harvey-O
项目:g
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
s.SetLineno(v.Line)
switch v.Op {
case ssa.OpInitMem:
// memory arg needs no code
case ssa.OpArg:
// input args need no code
case ssa.OpSP, ssa.OpSB, ssa.OpGetG:
// nothing to do
case ssa.OpSelect0, ssa.OpSelect1:
// nothing to do
case ssa.OpCopy, ssa.OpMIPSMOVWconvert, ssa.OpMIPSMOVWreg:
t := v.Type
if t.IsMemory() {
return
}
x := v.Args[0].Reg()
y := v.Reg()
if x == y {
return
}
as := mips.AMOVW
if isFPreg(x) && isFPreg(y) {
as = mips.AMOVF
if t.Size() == 8 {
as = mips.AMOVD
}
}
p := gc.Prog(as)
p.From.Type = obj.TYPE_REG
p.From.Reg = x
p.To.Type = obj.TYPE_REG
p.To.Reg = y
if isHILO(x) && isHILO(y) || isHILO(x) && isFPreg(y) || isFPreg(x) && isHILO(y) {
// cannot move between special registers, use TMP as intermediate
p.To.Reg = mips.REGTMP
p = gc.Prog(mips.AMOVW)
p.From.Type = obj.TYPE_REG
p.From.Reg = mips.REGTMP
p.To.Type = obj.TYPE_REG
p.To.Reg = y
}
case ssa.OpMIPSMOVWnop:
if v.Reg() != v.Args[0].Reg() {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
// nothing to do
case ssa.OpLoadReg:
if v.Type.IsFlags() {
v.Fatalf("load flags not implemented: %v", v.LongString())
return
}
r := v.Reg()
p := gc.Prog(loadByType(v.Type, r))
gc.AddrAuto(&p.From, v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = r
if isHILO(r) {
// cannot directly load, load to TMP and move
p.To.Reg = mips.REGTMP
p = gc.Prog(mips.AMOVW)
p.From.Type = obj.TYPE_REG
p.From.Reg = mips.REGTMP
p.To.Type = obj.TYPE_REG
p.To.Reg = r
}
case ssa.OpStoreReg:
if v.Type.IsFlags() {
v.Fatalf("store flags not implemented: %v", v.LongString())
return
}
r := v.Args[0].Reg()
if isHILO(r) {
// cannot directly store, move to TMP and store
p := gc.Prog(mips.AMOVW)
p.From.Type = obj.TYPE_REG
p.From.Reg = r
p.To.Type = obj.TYPE_REG
p.To.Reg = mips.REGTMP
r = mips.REGTMP
}
p := gc.Prog(storeByType(v.Type, r))
p.From.Type = obj.TYPE_REG
p.From.Reg = r
gc.AddrAuto(&p.To, v)
case ssa.OpMIPSADD,
ssa.OpMIPSSUB,
ssa.OpMIPSAND,
ssa.OpMIPSOR,
ssa.OpMIPSXOR,
ssa.OpMIPSNOR,
ssa.OpMIPSSLL,
ssa.OpMIPSSRL,
ssa.OpMIPSSRA,
ssa.OpMIPSADDF,
ssa.OpMIPSADDD,
ssa.OpMIPSSUBF,
ssa.OpMIPSSUBD,
ssa.OpMIPSMULF,
//.........这里部分代码省略.........
作者:Mokole
项目:g
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
s.SetLineno(v.Line)
switch v.Op {
case ssa.OpAMD64ADDQ, ssa.OpAMD64ADDL:
r := gc.SSARegNum(v)
r1 := gc.SSARegNum(v.Args[0])
r2 := gc.SSARegNum(v.Args[1])
switch {
case r == r1:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = r2
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case r == r2:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = r1
p.To.Type = obj.TYPE_REG
p.To.Reg = r
default:
var asm obj.As
if v.Op == ssa.OpAMD64ADDQ {
asm = x86.ALEAQ
} else {
asm = x86.ALEAL
}
p := gc.Prog(asm)
p.From.Type = obj.TYPE_MEM
p.From.Reg = r1
p.From.Scale = 1
p.From.Index = r2
p.To.Type = obj.TYPE_REG
p.To.Reg = r
}
// 2-address opcode arithmetic
case ssa.OpAMD64SUBQ, ssa.OpAMD64SUBL,
ssa.OpAMD64MULQ, ssa.OpAMD64MULL,
ssa.OpAMD64ANDQ, ssa.OpAMD64ANDL,
ssa.OpAMD64ORQ, ssa.OpAMD64ORL,
ssa.OpAMD64XORQ, ssa.OpAMD64XORL,
ssa.OpAMD64SHLQ, ssa.OpAMD64SHLL,
ssa.OpAMD64SHRQ, ssa.OpAMD64SHRL, ssa.OpAMD64SHRW, ssa.OpAMD64SHRB,
ssa.OpAMD64SARQ, ssa.OpAMD64SARL, ssa.OpAMD64SARW, ssa.OpAMD64SARB,
ssa.OpAMD64ADDSS, ssa.OpAMD64ADDSD, ssa.OpAMD64SUBSS, ssa.OpAMD64SUBSD,
ssa.OpAMD64MULSS, ssa.OpAMD64MULSD, ssa.OpAMD64DIVSS, ssa.OpAMD64DIVSD,
ssa.OpAMD64PXOR:
r := gc.SSARegNum(v)
if r != gc.SSARegNum(v.Args[0]) {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
opregreg(v.Op.Asm(), r, gc.SSARegNum(v.Args[1]))
case ssa.OpAMD64DIVQU, ssa.OpAMD64DIVLU, ssa.OpAMD64DIVWU:
// Arg[0] (the dividend) is in AX.
// Arg[1] (the divisor) can be in any other register.
// Result[0] (the quotient) is in AX.
// Result[1] (the remainder) is in DX.
r := gc.SSARegNum(v.Args[1])
// Zero extend dividend.
c := gc.Prog(x86.AXORL)
c.From.Type = obj.TYPE_REG
c.From.Reg = x86.REG_DX
c.To.Type = obj.TYPE_REG
c.To.Reg = x86.REG_DX
// Issue divide.
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = r
case ssa.OpAMD64DIVQ, ssa.OpAMD64DIVL, ssa.OpAMD64DIVW:
// Arg[0] (the dividend) is in AX.
// Arg[1] (the divisor) can be in any other register.
// Result[0] (the quotient) is in AX.
// Result[1] (the remainder) is in DX.
r := gc.SSARegNum(v.Args[1])
// CPU faults upon signed overflow, which occurs when the most
// negative int is divided by -1. Handle divide by -1 as a special case.
var c *obj.Prog
switch v.Op {
case ssa.OpAMD64DIVQ:
c = gc.Prog(x86.ACMPQ)
case ssa.OpAMD64DIVL:
c = gc.Prog(x86.ACMPL)
case ssa.OpAMD64DIVW:
c = gc.Prog(x86.ACMPW)
}
c.From.Type = obj.TYPE_REG
c.From.Reg = r
c.To.Type = obj.TYPE_CONST
c.To.Offset = -1
j1 := gc.Prog(x86.AJEQ)
j1.To.Type = obj.TYPE_BRANCH
// Sign extend dividend.
switch v.Op {
case ssa.OpAMD64DIVQ:
//.........这里部分代码省略.........
作者:hurkg
项目:g
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
s.SetLineno(v.Line)
if gc.Thearch.Use387 {
if ssaGenValue387(s, v) {
return // v was handled by 387 generation.
}
}
switch v.Op {
case ssa.Op386ADDL:
r := gc.SSARegNum(v)
r1 := gc.SSARegNum(v.Args[0])
r2 := gc.SSARegNum(v.Args[1])
switch {
case r == r1:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = r2
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case r == r2:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = r1
p.To.Type = obj.TYPE_REG
p.To.Reg = r
default:
p := gc.Prog(x86.ALEAL)
p.From.Type = obj.TYPE_MEM
p.From.Reg = r1
p.From.Scale = 1
p.From.Index = r2
p.To.Type = obj.TYPE_REG
p.To.Reg = r
}
// 2-address opcode arithmetic
case ssa.Op386SUBL,
ssa.Op386MULL,
ssa.Op386ANDL,
ssa.Op386ORL,
ssa.Op386XORL,
ssa.Op386SHLL,
ssa.Op386SHRL, ssa.Op386SHRW, ssa.Op386SHRB,
ssa.Op386SARL, ssa.Op386SARW, ssa.Op386SARB,
ssa.Op386ADDSS, ssa.Op386ADDSD, ssa.Op386SUBSS, ssa.Op386SUBSD,
ssa.Op386MULSS, ssa.Op386MULSD, ssa.Op386DIVSS, ssa.Op386DIVSD,
ssa.Op386PXOR,
ssa.Op386ADCL,
ssa.Op386SBBL:
r := gc.SSARegNum(v)
if r != gc.SSARegNum(v.Args[0]) {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
opregreg(v.Op.Asm(), r, gc.SSARegNum(v.Args[1]))
case ssa.Op386ADDLcarry, ssa.Op386SUBLcarry:
// output 0 is carry/borrow, output 1 is the low 32 bits.
r := gc.SSARegNum1(v)
if r != gc.SSARegNum(v.Args[0]) {
v.Fatalf("input[0] and output[1] not in same register %s", v.LongString())
}
opregreg(v.Op.Asm(), r, gc.SSARegNum(v.Args[1]))
case ssa.Op386ADDLconstcarry, ssa.Op386SUBLconstcarry:
// output 0 is carry/borrow, output 1 is the low 32 bits.
r := gc.SSARegNum1(v)
if r != gc.SSARegNum(v.Args[0]) {
v.Fatalf("input[0] and output[1] not in same register %s", v.LongString())
}
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.Op386DIVL, ssa.Op386DIVW,
ssa.Op386DIVLU, ssa.Op386DIVWU,
ssa.Op386MODL, ssa.Op386MODW,
ssa.Op386MODLU, ssa.Op386MODWU:
// Arg[0] is already in AX as it's the only register we allow
// and AX is the only output
x := gc.SSARegNum(v.Args[1])
// CPU faults upon signed overflow, which occurs when most
// negative int is divided by -1.
var j *obj.Prog
if v.Op == ssa.Op386DIVL || v.Op == ssa.Op386DIVW ||
v.Op == ssa.Op386MODL || v.Op == ssa.Op386MODW {
var c *obj.Prog
switch v.Op {
case ssa.Op386DIVL, ssa.Op386MODL:
c = gc.Prog(x86.ACMPL)
j = gc.Prog(x86.AJEQ)
gc.Prog(x86.ACDQ) //TODO: fix
case ssa.Op386DIVW, ssa.Op386MODW:
//.........这里部分代码省略.........
作者:kuangchanglan
项目:g
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
s.SetLineno(v.Line)
switch v.Op {
case ssa.OpS390XSLD, ssa.OpS390XSLW,
ssa.OpS390XSRD, ssa.OpS390XSRW,
ssa.OpS390XSRAD, ssa.OpS390XSRAW:
r := v.Reg()
r1 := v.Args[0].Reg()
r2 := v.Args[1].Reg()
if r2 == s390x.REG_R0 {
v.Fatalf("cannot use R0 as shift value %s", v.LongString())
}
p := opregreg(v.Op.Asm(), r, r2)
if r != r1 {
p.Reg = r1
}
case ssa.OpS390XADD, ssa.OpS390XADDW,
ssa.OpS390XSUB, ssa.OpS390XSUBW,
ssa.OpS390XAND, ssa.OpS390XANDW,
ssa.OpS390XOR, ssa.OpS390XORW,
ssa.OpS390XXOR, ssa.OpS390XXORW:
r := v.Reg()
r1 := v.Args[0].Reg()
r2 := v.Args[1].Reg()
p := opregreg(v.Op.Asm(), r, r2)
if r != r1 {
p.Reg = r1
}
// 2-address opcode arithmetic
case ssa.OpS390XMULLD, ssa.OpS390XMULLW,
ssa.OpS390XMULHD, ssa.OpS390XMULHDU,
ssa.OpS390XFADDS, ssa.OpS390XFADD, ssa.OpS390XFSUBS, ssa.OpS390XFSUB,
ssa.OpS390XFMULS, ssa.OpS390XFMUL, ssa.OpS390XFDIVS, ssa.OpS390XFDIV:
r := v.Reg()
if r != v.Args[0].Reg() {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
opregreg(v.Op.Asm(), r, v.Args[1].Reg())
case ssa.OpS390XDIVD, ssa.OpS390XDIVW,
ssa.OpS390XDIVDU, ssa.OpS390XDIVWU,
ssa.OpS390XMODD, ssa.OpS390XMODW,
ssa.OpS390XMODDU, ssa.OpS390XMODWU:
// TODO(mundaym): use the temp registers every time like x86 does with AX?
dividend := v.Args[0].Reg()
divisor := v.Args[1].Reg()
// CPU faults upon signed overflow, which occurs when most
// negative int is divided by -1.
var j *obj.Prog
if v.Op == ssa.OpS390XDIVD || v.Op == ssa.OpS390XDIVW ||
v.Op == ssa.OpS390XMODD || v.Op == ssa.OpS390XMODW {
var c *obj.Prog
c = gc.Prog(s390x.ACMP)
j = gc.Prog(s390x.ABEQ)
c.From.Type = obj.TYPE_REG
c.From.Reg = divisor
c.To.Type = obj.TYPE_CONST
c.To.Offset = -1
j.To.Type = obj.TYPE_BRANCH
}
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = divisor
p.Reg = 0
p.To.Type = obj.TYPE_REG
p.To.Reg = dividend
// signed division, rest of the check for -1 case
if j != nil {
j2 := gc.Prog(s390x.ABR)
j2.To.Type = obj.TYPE_BRANCH
var n *obj.Prog
if v.Op == ssa.OpS390XDIVD || v.Op == ssa.OpS390XDIVW {
// n * -1 = -n
n = gc.Prog(s390x.ANEG)
n.To.Type = obj.TYPE_REG
n.To.Reg = dividend
} else {
// n % -1 == 0
n = gc.Prog(s390x.AXOR)
n.From.Type = obj.TYPE_REG
n.From.Reg = dividend
n.To.Type = obj.TYPE_REG
n.To.Reg = dividend
}
j.To.Val = n
j2.To.Val = s.Pc()
}
case ssa.OpS390XADDconst, ssa.OpS390XADDWconst:
opregregimm(v.Op.Asm(), v.Reg(), v.Args[0].Reg(), v.AuxInt)
case ssa.OpS390XMULLDconst, ssa.OpS390XMULLWconst,
ssa.OpS390XSUBconst, ssa.OpS390XSUBWconst,
//.........这里部分代码省略.........
作者:duhaibo040
项目:go-
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
s.SetLineno(v.Line)
switch v.Op {
case ssa.OpAMD64ADDQ, ssa.OpAMD64ADDL, ssa.OpAMD64ADDW:
r := gc.SSARegNum(v)
r1 := gc.SSARegNum(v.Args[0])
r2 := gc.SSARegNum(v.Args[1])
switch {
case r == r1:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = r2
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case r == r2:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = r1
p.To.Type = obj.TYPE_REG
p.To.Reg = r
default:
var asm obj.As
switch v.Op {
case ssa.OpAMD64ADDQ:
asm = x86.ALEAQ
case ssa.OpAMD64ADDL:
asm = x86.ALEAL
case ssa.OpAMD64ADDW:
asm = x86.ALEAL
}
p := gc.Prog(asm)
p.From.Type = obj.TYPE_MEM
p.From.Reg = r1
p.From.Scale = 1
p.From.Index = r2
p.To.Type = obj.TYPE_REG
p.To.Reg = r
}
// 2-address opcode arithmetic, symmetric
case ssa.OpAMD64ADDB, ssa.OpAMD64ADDSS, ssa.OpAMD64ADDSD,
ssa.OpAMD64ANDQ, ssa.OpAMD64ANDL, ssa.OpAMD64ANDW, ssa.OpAMD64ANDB,
ssa.OpAMD64ORQ, ssa.OpAMD64ORL, ssa.OpAMD64ORW, ssa.OpAMD64ORB,
ssa.OpAMD64XORQ, ssa.OpAMD64XORL, ssa.OpAMD64XORW, ssa.OpAMD64XORB,
ssa.OpAMD64MULQ, ssa.OpAMD64MULL, ssa.OpAMD64MULW, ssa.OpAMD64MULB,
ssa.OpAMD64MULSS, ssa.OpAMD64MULSD, ssa.OpAMD64PXOR:
r := gc.SSARegNum(v)
x := gc.SSARegNum(v.Args[0])
y := gc.SSARegNum(v.Args[1])
if x != r && y != r {
opregreg(moveByType(v.Type), r, x)
x = r
}
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.To.Type = obj.TYPE_REG
p.To.Reg = r
if x == r {
p.From.Reg = y
} else {
p.From.Reg = x
}
// 2-address opcode arithmetic, not symmetric
case ssa.OpAMD64SUBQ, ssa.OpAMD64SUBL, ssa.OpAMD64SUBW, ssa.OpAMD64SUBB:
r := gc.SSARegNum(v)
x := gc.SSARegNum(v.Args[0])
y := gc.SSARegNum(v.Args[1])
var neg bool
if y == r {
// compute -(y-x) instead
x, y = y, x
neg = true
}
if x != r {
opregreg(moveByType(v.Type), r, x)
}
opregreg(v.Op.Asm(), r, y)
if neg {
if v.Op == ssa.OpAMD64SUBQ {
p := gc.Prog(x86.ANEGQ)
p.To.Type = obj.TYPE_REG
p.To.Reg = r
} else { // Avoids partial registers write
p := gc.Prog(x86.ANEGL)
p.To.Type = obj.TYPE_REG
p.To.Reg = r
}
}
case ssa.OpAMD64SUBSS, ssa.OpAMD64SUBSD, ssa.OpAMD64DIVSS, ssa.OpAMD64DIVSD:
r := gc.SSARegNum(v)
x := gc.SSARegNum(v.Args[0])
y := gc.SSARegNum(v.Args[1])
if y == r && x != r {
// r/y := x op r/y, need to preserve x and rewrite to
// r/y := r/y op x15
x15 := int16(x86.REG_X15)
// register move y to x15
// register move x to y
// rename y with x15
opregreg(moveByType(v.Type), x15, y)
//.........这里部分代码省略.........
作者:achand
项目:g
// Generates code for v using 387 instructions. Reports whether
// the instruction was handled by this routine.
func ssaGenValue387(s *gc.SSAGenState, v *ssa.Value) bool {
// The SSA compiler pretends that it has an SSE backend.
// If we don't have one of those, we need to translate
// all the SSE ops to equivalent 387 ops. That's what this
// function does.
switch v.Op {
case ssa.Op386MOVSSconst, ssa.Op386MOVSDconst:
p := gc.Prog(loadPush(v.Type))
p.From.Type = obj.TYPE_FCONST
p.From.Val = math.Float64frombits(uint64(v.AuxInt))
p.To.Type = obj.TYPE_REG
p.To.Reg = x86.REG_F0
popAndSave(s, v)
return true
case ssa.Op386MOVSSconst2, ssa.Op386MOVSDconst2:
p := gc.Prog(loadPush(v.Type))
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = x86.REG_F0
popAndSave(s, v)
return true
case ssa.Op386MOVSSload, ssa.Op386MOVSDload, ssa.Op386MOVSSloadidx1, ssa.Op386MOVSDloadidx1, ssa.Op386MOVSSloadidx4, ssa.Op386MOVSDloadidx8:
p := gc.Prog(loadPush(v.Type))
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v)
switch v.Op {
case ssa.Op386MOVSSloadidx1, ssa.Op386MOVSDloadidx1:
p.From.Scale = 1
p.From.Index = v.Args[1].Reg()
case ssa.Op386MOVSSloadidx4:
p.From.Scale = 4
p.From.Index = v.Args[1].Reg()
case ssa.Op386MOVSDloadidx8:
p.From.Scale = 8
p.From.Index = v.Args[1].Reg()
}
p.To.Type = obj.TYPE_REG
p.To.Reg = x86.REG_F0
popAndSave(s, v)
return true
case ssa.Op386MOVSSstore, ssa.Op386MOVSDstore:
// Push to-be-stored value on top of stack.
push(s, v.Args[1])
// Pop and store value.
var op obj.As
switch v.Op {
case ssa.Op386MOVSSstore:
op = x86.AFMOVFP
case ssa.Op386MOVSDstore:
op = x86.AFMOVDP
}
p := gc.Prog(op)
p.From.Type = obj.TYPE_REG
p.From.Reg = x86.REG_F0
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v)
return true
case ssa.Op386MOVSSstoreidx1, ssa.Op386MOVSDstoreidx1, ssa.Op386MOVSSstoreidx4, ssa.Op386MOVSDstoreidx8:
push(s, v.Args[2])
var op obj.As
switch v.Op {
case ssa.Op386MOVSSstoreidx1, ssa.Op386MOVSSstoreidx4:
op = x86.AFMOVFP
case ssa.Op386MOVSDstoreidx1, ssa.Op386MOVSDstoreidx8:
op = x86.AFMOVDP
}
p := gc.Prog(op)
p.From.Type = obj.TYPE_REG
p.From.Reg = x86.REG_F0
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v)
switch v.Op {
case ssa.Op386MOVSSstoreidx1, ssa.Op386MOVSDstoreidx1:
p.To.Scale = 1
p.To.Index = v.Args[1].Reg()
case ssa.Op386MOVSSstoreidx4:
p.To.Scale = 4
p.To.Index = v.Args[1].Reg()
case ssa.Op386MOVSDstoreidx8:
p.To.Scale = 8
p.To.Index = v.Args[1].Reg()
}
return true
case ssa.Op386ADDSS, ssa.Op386ADDSD, ssa.Op386SUBSS, ssa.Op386SUBSD,
ssa.Op386MULSS, ssa.Op386MULSD, ssa.Op386DIVSS, ssa.Op386DIVSD:
if v.Reg() != v.Args[0].Reg() {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
//.........这里部分代码省略.........