作者:ckeye
项目:gosr
func ginscmp(op gc.Op, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog {
if gc.Isint[t.Etype] && n1.Op == gc.OLITERAL && n2.Op != gc.OLITERAL {
// Reverse comparison to place constant last.
op = gc.Brrev(op)
n1, n2 = n2, n1
}
var r1, r2, g1, g2 gc.Node
gc.Regalloc(&r1, t, n1)
gc.Regalloc(&g1, n1.Type, &r1)
gc.Cgen(n1, &g1)
gmove(&g1, &r1)
if gc.Isint[t.Etype] && gc.Isconst(n2, gc.CTINT) {
ginscon2(optoas(gc.OCMP, t), &r1, n2.Int())
} else {
gc.Regalloc(&r2, t, n2)
gc.Regalloc(&g2, n1.Type, &r2)
gc.Cgen(n2, &g2)
gmove(&g2, &r2)
rawgins(optoas(gc.OCMP, t), &r1, &r2)
gc.Regfree(&g2)
gc.Regfree(&r2)
}
gc.Regfree(&g1)
gc.Regfree(&r1)
return gc.Gbranch(optoas(op, t), nil, likely)
}
作者:ckeye
项目:gosr
func ginscmp(op gc.Op, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog {
if gc.Isint[t.Etype] && n1.Op == gc.OLITERAL && n1.Int() == 0 && n2.Op != gc.OLITERAL {
op = gc.Brrev(op)
n1, n2 = n2, n1
}
var r1, r2, g1, g2 gc.Node
gc.Regalloc(&r1, t, n1)
gc.Regalloc(&g1, n1.Type, &r1)
gc.Cgen(n1, &g1)
gmove(&g1, &r1)
if gc.Isint[t.Etype] && n2.Op == gc.OLITERAL && n2.Int() == 0 {
gins(arm.ACMP, &r1, n2)
} else {
gc.Regalloc(&r2, t, n2)
gc.Regalloc(&g2, n1.Type, &r2)
gc.Cgen(n2, &g2)
gmove(&g2, &r2)
gins(optoas(gc.OCMP, t), &r1, &r2)
gc.Regfree(&g2)
gc.Regfree(&r2)
}
gc.Regfree(&g1)
gc.Regfree(&r1)
return gc.Gbranch(optoas(op, t), nil, likely)
}
作者:ckeye
项目:gosr
/*
* generate division.
* generates one of:
* res = nl / nr
* res = nl % nr
* according to op.
*/
func dodiv(op gc.Op, nl *gc.Node, nr *gc.Node, res *gc.Node) {
t := nl.Type
t0 := t
if t.Width < 8 {
if gc.Issigned[t.Etype] {
t = gc.Types[gc.TINT64]
} else {
t = gc.Types[gc.TUINT64]
}
}
a := optoas(gc.ODIV, t)
var tl gc.Node
gc.Regalloc(&tl, t0, nil)
var tr gc.Node
gc.Regalloc(&tr, t0, nil)
if nl.Ullman >= nr.Ullman {
gc.Cgen(nl, &tl)
gc.Cgen(nr, &tr)
} else {
gc.Cgen(nr, &tr)
gc.Cgen(nl, &tl)
}
if t != t0 {
// Convert
tl2 := tl
tr2 := tr
tl.Type = t
tr.Type = t
gmove(&tl2, &tl)
gmove(&tr2, &tr)
}
// Handle divide-by-zero panic.
p1 := ginsbranch(mips.ABNE, nil, &tr, nil, 0)
if panicdiv == nil {
panicdiv = gc.Sysfunc("panicdivide")
}
gc.Ginscall(panicdiv, -1)
gc.Patch(p1, gc.Pc)
gins3(a, &tr, &tl, nil)
gc.Regfree(&tr)
if op == gc.ODIV {
var lo gc.Node
gc.Nodreg(&lo, gc.Types[gc.TUINT64], mips.REG_LO)
gins(mips.AMOVV, &lo, &tl)
} else { // remainder in REG_HI
var hi gc.Node
gc.Nodreg(&hi, gc.Types[gc.TUINT64], mips.REG_HI)
gins(mips.AMOVV, &hi, &tl)
}
gmove(&tl, res)
gc.Regfree(&tl)
}
作者:ckeye
项目:gosr
// gins is called by the front end.
// It synthesizes some multiple-instruction sequences
// so the front end can stay simpler.
func gins(as int, f, t *gc.Node) *obj.Prog {
if as >= obj.A_ARCHSPECIFIC {
if x, ok := f.IntLiteral(); ok {
ginscon(as, x, t)
return nil // caller must not use
}
}
return rawgins(as, f, t)
}
作者:ckeye
项目:gosr
/*
* n is a 64-bit value. fill in lo and hi to refer to its 32-bit halves.
*/
func split64(n *gc.Node, lo *gc.Node, hi *gc.Node) {
if !gc.Is64(n.Type) {
gc.Fatalf("split64 %v", n.Type)
}
if nsclean >= len(sclean) {
gc.Fatalf("split64 clean")
}
sclean[nsclean].Op = gc.OEMPTY
nsclean++
switch n.Op {
default:
switch n.Op {
default:
var n1 gc.Node
if !dotaddable(n, &n1) {
gc.Igen(n, &n1, nil)
sclean[nsclean-1] = n1
}
n = &n1
case gc.ONAME:
if n.Class == gc.PPARAMREF {
var n1 gc.Node
gc.Cgen(n.Name.Heapaddr, &n1)
sclean[nsclean-1] = n1
n = &n1
}
// nothing
case gc.OINDREG:
break
}
*lo = *n
*hi = *n
lo.Type = gc.Types[gc.TUINT32]
if n.Type.Etype == gc.TINT64 {
hi.Type = gc.Types[gc.TINT32]
} else {
hi.Type = gc.Types[gc.TUINT32]
}
hi.Xoffset += 4
case gc.OLITERAL:
var n1 gc.Node
n.Convconst(&n1, n.Type)
i := n1.Int()
gc.Nodconst(lo, gc.Types[gc.TUINT32], int64(uint32(i)))
i >>= 32
if n.Type.Etype == gc.TINT64 {
gc.Nodconst(hi, gc.Types[gc.TINT32], int64(int32(i)))
} else {
gc.Nodconst(hi, gc.Types[gc.TUINT32], int64(uint32(i)))
}
}
}
作者:ckeye
项目:gosr
func dotaddable(n *gc.Node, n1 *gc.Node) bool {
if n.Op != gc.ODOT {
return false
}
var oary [10]int64
var nn *gc.Node
o := gc.Dotoffset(n, oary[:], &nn)
if nn != nil && nn.Addable && o == 1 && oary[0] >= 0 {
*n1 = *nn
n1.Type = n.Type
n1.Xoffset += oary[0]
return true
}
return false
}
作者:ckeye
项目:gosr
func restx(x *gc.Node, oldx *gc.Node) {
if oldx.Op != 0 {
x.Type = gc.Types[gc.TINT64]
gc.SetReg(int(x.Reg), int(oldx.Etype))
gmove(oldx, x)
gc.Regfree(oldx)
}
}
作者:ckeye
项目:gosr
/*
* register dr is one of the special ones (AX, CX, DI, SI, etc.).
* we need to use it. if it is already allocated as a temporary
* (r > 1; can only happen if a routine like sgen passed a
* special as cgen's res and then cgen used regalloc to reuse
* it as its own temporary), then move it for now to another
* register. caller must call restx to move it back.
* the move is not necessary if dr == res, because res is
* known to be dead.
*/
func savex(dr int, x *gc.Node, oldx *gc.Node, res *gc.Node, t *gc.Type) {
r := uint8(gc.GetReg(dr))
// save current ax and dx if they are live
// and not the destination
*oldx = gc.Node{}
gc.Nodreg(x, t, dr)
if r > 1 && !gc.Samereg(x, res) {
gc.Regalloc(oldx, gc.Types[gc.TINT64], nil)
x.Type = gc.Types[gc.TINT64]
gmove(x, oldx)
x.Type = t
// TODO(marvin): Fix Node.EType type union.
oldx.Etype = gc.EType(r) // squirrel away old r value
gc.SetReg(dr, 1)
}
}
作者:ckeye
项目:gosr
func bignodes() {
if bignodes_did {
return
}
bignodes_did = true
gc.Nodconst(&zerof, gc.Types[gc.TINT64], 0)
zerof.Convconst(&zerof, gc.Types[gc.TFLOAT64])
var i big.Int
i.SetInt64(1)
i.Lsh(&i, 63)
var bigi gc.Node
gc.Nodconst(&bigi, gc.Types[gc.TUINT64], 0)
bigi.SetBigInt(&i)
bigi.Convconst(&two63f, gc.Types[gc.TFLOAT64])
gc.Nodconst(&bigi, gc.Types[gc.TUINT64], 0)
i.Lsh(&i, 1)
bigi.SetBigInt(&i)
bigi.Convconst(&two64f, gc.Types[gc.TFLOAT64])
}
作者:ckeye
项目:gosr
/*
* generate move:
* t = f
* hard part is conversions.
*/
func gmove(f *gc.Node, t *gc.Node) {
if gc.Debug['M'] != 0 {
fmt.Printf("gmove %v -> %v\n", gc.Nconv(f, obj.FmtLong), gc.Nconv(t, obj.FmtLong))
}
ft := gc.Simsimtype(f.Type)
tt := gc.Simsimtype(t.Type)
cvt := t.Type
if gc.Iscomplex[ft] || gc.Iscomplex[tt] {
gc.Complexmove(f, t)
return
}
// cannot have two memory operands
var a int
if gc.Ismem(f) && gc.Ismem(t) {
goto hard
}
// convert constant to desired type
if f.Op == gc.OLITERAL {
var con gc.Node
f.Convconst(&con, t.Type)
f = &con
ft = tt // so big switch will choose a simple mov
// some constants can't move directly to memory.
if gc.Ismem(t) {
// float constants come from memory.
if gc.Isfloat[tt] {
goto hard
}
// 64-bit immediates are really 32-bit sign-extended
// unless moving into a register.
if gc.Isint[tt] {
if i := con.Int(); int64(int32(i)) != i {
goto hard
}
}
}
}
// value -> value copy, only one memory operand.
// figure out the instruction to use.
// break out of switch for one-instruction gins.
// goto rdst for "destination must be register".
// goto hard for "convert to cvt type first".
// otherwise handle and return.
switch uint32(ft)<<16 | uint32(tt) {
default:
gc.Fatalf("gmove %v -> %v", gc.Tconv(f.Type, obj.FmtLong), gc.Tconv(t.Type, obj.FmtLong))
/*
* integer copy and truncate
*/
case gc.TINT8<<16 | gc.TINT8, // same size
gc.TINT8<<16 | gc.TUINT8,
gc.TUINT8<<16 | gc.TINT8,
gc.TUINT8<<16 | gc.TUINT8,
gc.TINT16<<16 | gc.TINT8,
// truncate
gc.TUINT16<<16 | gc.TINT8,
gc.TINT32<<16 | gc.TINT8,
gc.TUINT32<<16 | gc.TINT8,
gc.TINT64<<16 | gc.TINT8,
gc.TUINT64<<16 | gc.TINT8,
gc.TINT16<<16 | gc.TUINT8,
gc.TUINT16<<16 | gc.TUINT8,
gc.TINT32<<16 | gc.TUINT8,
gc.TUINT32<<16 | gc.TUINT8,
gc.TINT64<<16 | gc.TUINT8,
gc.TUINT64<<16 | gc.TUINT8:
a = x86.AMOVB
case gc.TINT16<<16 | gc.TINT16, // same size
gc.TINT16<<16 | gc.TUINT16,
gc.TUINT16<<16 | gc.TINT16,
gc.TUINT16<<16 | gc.TUINT16,
gc.TINT32<<16 | gc.TINT16,
// truncate
gc.TUINT32<<16 | gc.TINT16,
gc.TINT64<<16 | gc.TINT16,
gc.TUINT64<<16 | gc.TINT16,
gc.TINT32<<16 | gc.TUINT16,
gc.TUINT32<<16 | gc.TUINT16,
gc.TINT64<<16 | gc.TUINT16,
gc.TUINT64<<16 | gc.TUINT16:
a = x86.AMOVW
case gc.TINT32<<16 | gc.TINT32, // same size
gc.TINT32<<16 | gc.TUINT32,
gc.TUINT32<<16 | gc.TINT32,
//.........这里部分代码省略.........
作者:ckeye
项目:gosr
/*
* generate code to compute address of n,
* a reference to a (perhaps nested) field inside
* an array or struct.
* return 0 on failure, 1 on success.
* on success, leaves usable address in a.
*
* caller is responsible for calling sudoclean
* after successful sudoaddable,
* to release the register used for a.
*/
func sudoaddable(as int, n *gc.Node, a *obj.Addr) bool {
if n.Type == nil {
return false
}
*a = obj.Addr{}
switch n.Op {
case gc.OLITERAL:
if !gc.Isconst(n, gc.CTINT) {
break
}
v := n.Int()
if v >= 32000 || v <= -32000 {
break
}
switch as {
default:
return false
case x86.AADDB,
x86.AADDW,
x86.AADDL,
x86.AADDQ,
x86.ASUBB,
x86.ASUBW,
x86.ASUBL,
x86.ASUBQ,
x86.AANDB,
x86.AANDW,
x86.AANDL,
x86.AANDQ,
x86.AORB,
x86.AORW,
x86.AORL,
x86.AORQ,
x86.AXORB,
x86.AXORW,
x86.AXORL,
x86.AXORQ,
x86.AINCB,
x86.AINCW,
x86.AINCL,
x86.AINCQ,
x86.ADECB,
x86.ADECW,
x86.ADECL,
x86.ADECQ,
x86.AMOVB,
x86.AMOVW,
x86.AMOVL,
x86.AMOVQ:
break
}
cleani += 2
reg := &clean[cleani-1]
reg1 := &clean[cleani-2]
reg.Op = gc.OEMPTY
reg1.Op = gc.OEMPTY
gc.Naddr(a, n)
return true
case gc.ODOT,
gc.ODOTPTR:
cleani += 2
reg := &clean[cleani-1]
reg1 := &clean[cleani-2]
reg.Op = gc.OEMPTY
reg1.Op = gc.OEMPTY
var nn *gc.Node
var oary [10]int64
o := gc.Dotoffset(n, oary[:], &nn)
if nn == nil {
sudoclean()
return false
}
if nn.Addable && o == 1 && oary[0] >= 0 {
// directly addressable set of DOTs
n1 := *nn
n1.Type = n.Type
n1.Xoffset += oary[0]
gc.Naddr(a, &n1)
return true
}
gc.Regalloc(reg, gc.Types[gc.Tptr], nil)
//.........这里部分代码省略.........
作者:ckeye
项目:gosr
func blockcopy(n, res *gc.Node, osrc, odst, w int64) {
// determine alignment.
// want to avoid unaligned access, so have to use
// smaller operations for less aligned types.
// for example moving [4]byte must use 4 MOVB not 1 MOVW.
align := int(n.Type.Align)
var op int
switch align {
default:
gc.Fatalf("sgen: invalid alignment %d for %v", align, n.Type)
case 1:
op = arm.AMOVB
case 2:
op = arm.AMOVH
case 4:
op = arm.AMOVW
}
if w%int64(align) != 0 {
gc.Fatalf("sgen: unaligned size %d (align=%d) for %v", w, align, n.Type)
}
c := int32(w / int64(align))
if osrc%int64(align) != 0 || odst%int64(align) != 0 {
gc.Fatalf("sgen: unaligned offset src %d or dst %d (align %d)", osrc, odst, align)
}
// if we are copying forward on the stack and
// the src and dst overlap, then reverse direction
dir := align
if osrc < odst && int64(odst) < int64(osrc)+w {
dir = -dir
}
if op == arm.AMOVW && !gc.Nacl && dir > 0 && c >= 4 && c <= 128 {
var r0 gc.Node
r0.Op = gc.OREGISTER
r0.Reg = arm.REG_R0
var r1 gc.Node
r1.Op = gc.OREGISTER
r1.Reg = arm.REG_R0 + 1
var r2 gc.Node
r2.Op = gc.OREGISTER
r2.Reg = arm.REG_R0 + 2
var src gc.Node
gc.Regalloc(&src, gc.Types[gc.Tptr], &r1)
var dst gc.Node
gc.Regalloc(&dst, gc.Types[gc.Tptr], &r2)
if n.Ullman >= res.Ullman {
// eval n first
gc.Agen(n, &src)
if res.Op == gc.ONAME {
gc.Gvardef(res)
}
gc.Agen(res, &dst)
} else {
// eval res first
if res.Op == gc.ONAME {
gc.Gvardef(res)
}
gc.Agen(res, &dst)
gc.Agen(n, &src)
}
var tmp gc.Node
gc.Regalloc(&tmp, gc.Types[gc.Tptr], &r0)
f := gc.Sysfunc("duffcopy")
p := gins(obj.ADUFFCOPY, nil, f)
gc.Afunclit(&p.To, f)
// 8 and 128 = magic constants: see ../../runtime/asm_arm.s
p.To.Offset = 8 * (128 - int64(c))
gc.Regfree(&tmp)
gc.Regfree(&src)
gc.Regfree(&dst)
return
}
var dst gc.Node
var src gc.Node
if n.Ullman >= res.Ullman {
gc.Agenr(n, &dst, res) // temporarily use dst
gc.Regalloc(&src, gc.Types[gc.Tptr], nil)
gins(arm.AMOVW, &dst, &src)
if res.Op == gc.ONAME {
gc.Gvardef(res)
}
gc.Agen(res, &dst)
} else {
if res.Op == gc.ONAME {
gc.Gvardef(res)
}
gc.Agenr(res, &dst, res)
//.........这里部分代码省略.........
作者:ckeye
项目:gosr
/*
* attempt to generate 64-bit
* res = n
* return 1 on success, 0 if op not handled.
*/
func cgen64(n *gc.Node, res *gc.Node) {
if res.Op != gc.OINDREG && res.Op != gc.ONAME {
gc.Dump("n", n)
gc.Dump("res", res)
gc.Fatalf("cgen64 %v of %v", gc.Oconv(int(n.Op), 0), gc.Oconv(int(res.Op), 0))
}
switch n.Op {
default:
gc.Fatalf("cgen64 %v", gc.Oconv(int(n.Op), 0))
case gc.OMINUS:
gc.Cgen(n.Left, res)
var hi1 gc.Node
var lo1 gc.Node
split64(res, &lo1, &hi1)
gins(x86.ANEGL, nil, &lo1)
gins(x86.AADCL, ncon(0), &hi1)
gins(x86.ANEGL, nil, &hi1)
splitclean()
return
case gc.OCOM:
gc.Cgen(n.Left, res)
var lo1 gc.Node
var hi1 gc.Node
split64(res, &lo1, &hi1)
gins(x86.ANOTL, nil, &lo1)
gins(x86.ANOTL, nil, &hi1)
splitclean()
return
// binary operators.
// common setup below.
case gc.OADD,
gc.OSUB,
gc.OMUL,
gc.OLROT,
gc.OLSH,
gc.ORSH,
gc.OAND,
gc.OOR,
gc.OXOR:
break
}
l := n.Left
r := n.Right
if !l.Addable {
var t1 gc.Node
gc.Tempname(&t1, l.Type)
gc.Cgen(l, &t1)
l = &t1
}
if r != nil && !r.Addable {
var t2 gc.Node
gc.Tempname(&t2, r.Type)
gc.Cgen(r, &t2)
r = &t2
}
var ax gc.Node
gc.Nodreg(&ax, gc.Types[gc.TINT32], x86.REG_AX)
var cx gc.Node
gc.Nodreg(&cx, gc.Types[gc.TINT32], x86.REG_CX)
var dx gc.Node
gc.Nodreg(&dx, gc.Types[gc.TINT32], x86.REG_DX)
// Setup for binary operation.
var hi1 gc.Node
var lo1 gc.Node
split64(l, &lo1, &hi1)
var lo2 gc.Node
var hi2 gc.Node
if gc.Is64(r.Type) {
split64(r, &lo2, &hi2)
}
// Do op. Leave result in DX:AX.
switch n.Op {
// TODO: Constants
case gc.OADD:
gins(x86.AMOVL, &lo1, &ax)
gins(x86.AMOVL, &hi1, &dx)
gins(x86.AADDL, &lo2, &ax)
gins(x86.AADCL, &hi2, &dx)
// TODO: Constants.
case gc.OSUB:
gins(x86.AMOVL, &lo1, &ax)
gins(x86.AMOVL, &hi1, &dx)
//.........这里部分代码省略.........
作者:ckeye
项目:gosr
func clearfat_tail(n1 *gc.Node, b int64) {
if b >= 16 {
var vec_zero gc.Node
gc.Regalloc(&vec_zero, gc.Types[gc.TFLOAT64], nil)
gins(x86.AXORPS, &vec_zero, &vec_zero)
for b >= 16 {
gins(x86.AMOVUPS, &vec_zero, n1)
n1.Xoffset += 16
b -= 16
}
// MOVUPS X0, off(base) is a few bytes shorter than MOV 0, off(base)
if b != 0 {
n1.Xoffset -= 16 - b
gins(x86.AMOVUPS, &vec_zero, n1)
}
gc.Regfree(&vec_zero)
return
}
// Write sequence of MOV 0, off(base) instead of using STOSQ.
// The hope is that although the code will be slightly longer,
// the MOVs will have no dependencies and pipeline better
// than the unrolled STOSQ loop.
var z gc.Node
gc.Nodconst(&z, gc.Types[gc.TUINT64], 0)
if b >= 8 {
n1.Type = z.Type
gins(x86.AMOVQ, &z, n1)
n1.Xoffset += 8
b -= 8
if b != 0 {
n1.Xoffset -= 8 - b
gins(x86.AMOVQ, &z, n1)
}
return
}
if b >= 4 {
gc.Nodconst(&z, gc.Types[gc.TUINT32], 0)
n1.Type = z.Type
gins(x86.AMOVL, &z, n1)
n1.Xoffset += 4
b -= 4
if b != 0 {
n1.Xoffset -= 4 - b
gins(x86.AMOVL, &z, n1)
}
return
}
if b >= 2 {
gc.Nodconst(&z, gc.Types[gc.TUINT16], 0)
n1.Type = z.Type
gins(x86.AMOVW, &z, n1)
n1.Xoffset += 2
b -= 2
}
gc.Nodconst(&z, gc.Types[gc.TUINT8], 0)
for b > 0 {
n1.Type = z.Type
gins(x86.AMOVB, &z, n1)
n1.Xoffset++
b--
}
}
作者:ckeye
项目:gosr
func memname(n *gc.Node, t *gc.Type) {
gc.Tempname(n, t)
n.Sym = gc.Lookup("." + n.Sym.Name[1:]) // keep optimizer from registerizing
n.Orig.Sym = n.Sym
}
作者:ckeye
项目:gosr
func floatmove(f *gc.Node, t *gc.Node) {
var r1 gc.Node
ft := gc.Simsimtype(f.Type)
tt := gc.Simsimtype(t.Type)
cvt := t.Type
// cannot have two floating point memory operands.
if gc.Isfloat[ft] && gc.Isfloat[tt] && gc.Ismem(f) && gc.Ismem(t) {
goto hard
}
// convert constant to desired type
if f.Op == gc.OLITERAL {
var con gc.Node
f.Convconst(&con, t.Type)
f = &con
ft = gc.Simsimtype(con.Type)
// some constants can't move directly to memory.
if gc.Ismem(t) {
// float constants come from memory.
if gc.Isfloat[tt] {
goto hard
}
}
}
// value -> value copy, only one memory operand.
// figure out the instruction to use.
// break out of switch for one-instruction gins.
// goto rdst for "destination must be register".
// goto hard for "convert to cvt type first".
// otherwise handle and return.
switch uint32(ft)<<16 | uint32(tt) {
default:
if gc.Thearch.Use387 {
floatmove_387(f, t)
} else {
floatmove_sse(f, t)
}
return
// float to very long integer.
case gc.TFLOAT32<<16 | gc.TINT64,
gc.TFLOAT64<<16 | gc.TINT64:
if f.Op == gc.OREGISTER {
cvt = f.Type
goto hardmem
}
var r1 gc.Node
gc.Nodreg(&r1, gc.Types[ft], x86.REG_F0)
if ft == gc.TFLOAT32 {
gins(x86.AFMOVF, f, &r1)
} else {
gins(x86.AFMOVD, f, &r1)
}
// set round to zero mode during conversion
var t1 gc.Node
memname(&t1, gc.Types[gc.TUINT16])
var t2 gc.Node
memname(&t2, gc.Types[gc.TUINT16])
gins(x86.AFSTCW, nil, &t1)
gins(x86.AMOVW, ncon(0xf7f), &t2)
gins(x86.AFLDCW, &t2, nil)
if tt == gc.TINT16 {
gins(x86.AFMOVWP, &r1, t)
} else if tt == gc.TINT32 {
gins(x86.AFMOVLP, &r1, t)
} else {
gins(x86.AFMOVVP, &r1, t)
}
gins(x86.AFLDCW, &t1, nil)
return
case gc.TFLOAT32<<16 | gc.TUINT64,
gc.TFLOAT64<<16 | gc.TUINT64:
if !gc.Ismem(f) {
cvt = f.Type
goto hardmem
}
bignodes()
var f0 gc.Node
gc.Nodreg(&f0, gc.Types[ft], x86.REG_F0)
var f1 gc.Node
gc.Nodreg(&f1, gc.Types[ft], x86.REG_F0+1)
var ax gc.Node
gc.Nodreg(&ax, gc.Types[gc.TUINT16], x86.REG_AX)
if ft == gc.TFLOAT32 {
gins(x86.AFMOVF, f, &f0)
} else {
gins(x86.AFMOVD, f, &f0)
}
//.........这里部分代码省略.........
作者:ckeye
项目:gosr
func clearfat(nl *gc.Node) {
/* clear a fat object */
if gc.Debug['g'] != 0 {
gc.Dump("\nclearfat", nl)
}
// Avoid taking the address for simple enough types.
if gc.Componentgen(nil, nl) {
return
}
w := nl.Type.Width
if w > 1024 || (gc.Nacl && w >= 64) {
var oldn1 gc.Node
var n1 gc.Node
savex(x86.REG_DI, &n1, &oldn1, nil, gc.Types[gc.Tptr])
gc.Agen(nl, &n1)
var ax gc.Node
var oldax gc.Node
savex(x86.REG_AX, &ax, &oldax, nil, gc.Types[gc.Tptr])
gconreg(x86.AMOVL, 0, x86.REG_AX)
gconreg(movptr, w/8, x86.REG_CX)
gins(x86.AREP, nil, nil) // repeat
gins(x86.ASTOSQ, nil, nil) // STOQ AL,*(DI)+
if w%8 != 0 {
n1.Op = gc.OINDREG
clearfat_tail(&n1, w%8)
}
restx(&n1, &oldn1)
restx(&ax, &oldax)
return
}
if w >= 64 {
var oldn1 gc.Node
var n1 gc.Node
savex(x86.REG_DI, &n1, &oldn1, nil, gc.Types[gc.Tptr])
gc.Agen(nl, &n1)
var vec_zero gc.Node
var old_x0 gc.Node
savex(x86.REG_X0, &vec_zero, &old_x0, nil, gc.Types[gc.TFLOAT64])
gins(x86.AXORPS, &vec_zero, &vec_zero)
if di := dzDI(w); di != 0 {
gconreg(addptr, di, x86.REG_DI)
}
p := gins(obj.ADUFFZERO, nil, nil)
p.To.Type = obj.TYPE_ADDR
p.To.Sym = gc.Linksym(gc.Pkglookup("duffzero", gc.Runtimepkg))
p.To.Offset = dzOff(w)
if w%16 != 0 {
n1.Op = gc.OINDREG
n1.Xoffset -= 16 - w%16
gins(x86.AMOVUPS, &vec_zero, &n1)
}
restx(&vec_zero, &old_x0)
restx(&n1, &oldn1)
return
}
// NOTE: Must use agen, not igen, so that optimizer sees address
// being taken. We are not writing on field boundaries.
var n1 gc.Node
gc.Agenr(nl, &n1, nil)
n1.Op = gc.OINDREG
clearfat_tail(&n1, w)
gc.Regfree(&n1)
}
作者:ckeye
项目:gosr
/*
* generate shift according to op, one of:
* res = nl << nr
* res = nl >> nr
*/
func cgen_shift(op gc.Op, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) {
a := int(optoas(op, nl.Type))
if nr.Op == gc.OLITERAL {
var n1 gc.Node
gc.Regalloc(&n1, nl.Type, res)
gc.Cgen(nl, &n1)
sc := uint64(nr.Int())
if sc >= uint64(nl.Type.Width*8) {
// large shift gets 2 shifts by width-1
var n3 gc.Node
gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1)
gins(a, &n3, &n1)
gins(a, &n3, &n1)
} else {
gins(a, nr, &n1)
}
gmove(&n1, res)
gc.Regfree(&n1)
return
}
if nl.Ullman >= gc.UINF {
var n4 gc.Node
gc.Tempname(&n4, nl.Type)
gc.Cgen(nl, &n4)
nl = &n4
}
if nr.Ullman >= gc.UINF {
var n5 gc.Node
gc.Tempname(&n5, nr.Type)
gc.Cgen(nr, &n5)
nr = &n5
}
// Allow either uint32 or uint64 as shift type,
// to avoid unnecessary conversion from uint32 to uint64
// just to do the comparison.
tcount := gc.Types[gc.Simtype[nr.Type.Etype]]
if tcount.Etype < gc.TUINT32 {
tcount = gc.Types[gc.TUINT32]
}
var n1 gc.Node
gc.Regalloc(&n1, nr.Type, nil) // to hold the shift type in CX
var n3 gc.Node
gc.Regalloc(&n3, tcount, &n1) // to clear high bits of CX
var n2 gc.Node
gc.Regalloc(&n2, nl.Type, res)
if nl.Ullman >= nr.Ullman {
gc.Cgen(nl, &n2)
gc.Cgen(nr, &n1)
gmove(&n1, &n3)
} else {
gc.Cgen(nr, &n1)
gmove(&n1, &n3)
gc.Cgen(nl, &n2)
}
gc.Regfree(&n3)
// test and fix up large shifts
if !bounded {
gc.Nodconst(&n3, tcount, nl.Type.Width*8)
gcmp(optoas(gc.OCMP, tcount), &n1, &n3)
p1 := (*obj.Prog)(gc.Gbranch(optoas(gc.OLT, tcount), nil, +1))
if op == gc.ORSH && gc.Issigned[nl.Type.Etype] {
gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1)
gins(a, &n3, &n2)
} else {
gc.Nodconst(&n3, nl.Type, 0)
gmove(&n3, &n2)
}
gc.Patch(p1, gc.Pc)
}
gins(a, &n1, &n2)
gmove(&n2, res)
gc.Regfree(&n1)
gc.Regfree(&n2)
}