def test_normalised_difference_stats(dataset, output_name):
var1, var2 = list(dataset.data_vars)
ndstat = NormalisedDifferenceStats(var1, var2, output_name)
result = ndstat.compute(dataset)
assert isinstance(result, xr.Dataset)
assert 'time' not in result.dims
assert dataset.crs == result.crs
expected_output_varnames = set(f'{output_name}_{stat_name}' for stat_name in ndstat.stats)
assert set(result.data_vars) == expected_output_varnames
# Check the measurements() function raises an error on bad input_measurements
with pytest.raises(StatsConfigurationError):
invalid_names = [{'name': 'foo'}]
ndstat.measurements(invalid_names)
# Check the measurements() function returns something reasonable
input_measurements = [{'name': name} for name in (var1, var2)]
output_measurements = ndstat.measurements(input_measurements)
measurement_names = set(m['name'] for m in output_measurements)
assert expected_output_varnames == measurement_names
test_statistics.py 文件源码
python
阅读 30
收藏 0
点赞 0
评论 0
评论列表
文章目录