def load_transformer_list(config_data):
output_directory = config_data['embeddings_directory']
output_basename = config_data['embeddings_basename']
path = os.path.join(output_directory, output_basename)
config_fname = os.path.join(path, 'config.json')
with open(config_fname, 'r') as json_data:
wemb_config = json.load(json_data)
ngrams = wemb_config['ngrams']
transformers = []
for i in range(ngrams - 1):
phrase_model = Phrases.load(os.path.join(path, '{}gram'.format(i)))
transformers.append(phrase_model)
return transformers
评论列表
文章目录