def updatePlot(self):
self.ax.clear()
self.ax.plot(self.x_real,self.y_real)
self.ax.scatter(self.x_sample,self.y_sample,s=100)
self.ax.plot(self.x_pred,self.y_pred)
if self.constraint:
self.ax.plot(self.x_real,np.zeros(len(self.x_real)))
else:
self.ax.fill_between(self.x_pred.ravel(),self.y_pred-5*np.sqrt(self.sigma2_pred),self.y_pred+5*np.sqrt(self.sigma2_pred),color='black',alpha=0.1) #Confidence intervals
ax2.clear()
if ACQUIS==0:
ax2.fill_between(self.x_acquis.ravel(),np.zeros(len(self.x_acquis)),[(1-x)*(max(self.y_acquis)) for x in infeasibility],color='red',alpha=0.1)
ax2.fill_between(self.x_acquis.ravel(),np.zeros(len(self.y_acquis)),self.y_acquis,color='green',alpha=0.1)
#%% Index
#Button class for interactive simulation
1DconstrainedBayesianOptimisation.py 文件源码
python
阅读 24
收藏 0
点赞 0
评论 0
评论列表
文章目录