def run_all_dl(csvfile = saving_fp,
space = [hp.quniform('h1', 100, 550, 1),
hp.quniform('h2', 100, 550, 1),
hp.quniform('h3', 100, 550, 1),
#hp.choice('activation', ["RectifierWithDropout", "TanhWithDropout"]),
hp.uniform('hdr1', 0.001, 0.3),
hp.uniform('hdr2', 0.001, 0.3),
hp.uniform('hdr3', 0.001, 0.3),
hp.uniform('rho', 0.9, 0.999),
hp.uniform('epsilon', 1e-10, 1e-4)]):
# maxout works well with dropout (Goodfellow et al 2013), and rectifier has worked well with image recognition (LeCun et al 1998)
start_save(csvfile = csvfile)
trials = Trials()
print "Deep learning..."
best = fmin(objective,
space = space,
algo=tpe.suggest,
max_evals=evals,
trials=trials)
print best
print trials.losses()
with open('output/dlbest.pkl', 'w') as output:
pickle.dump(best, output, -1)
with open('output/dltrials.pkl', 'w') as output:
pickle.dump(trials, output, -1)
评论列表
文章目录