def hyperopt_search(args, data, model, param_grid, max_evals):
def objective(param_grid):
args.num_hidden = param_grid['num_hidden']
args.dropout_output = param_grid['dropout_output']
args.dropout_input = param_grid['dropout_input']
args.clip_norm = param_grid['clip_norm']
args.batch_size = param_grid['batch_size']
# args.learning_rate = param_grid['learning_rate']
print(args)
print()
scores = run_network(args, data, model, tuning=args.tune)
test_score, eval_score = scores
tf.reset_default_graph()
eval_score = -eval_score[0]
return {'loss': eval_score, 'params': args, 'status': STATUS_OK}
trials = Trials()
results = fmin(
objective, param_grid, algo=tpe.suggest,
trials=trials, max_evals=max_evals)
return results, trials.results
评论列表
文章目录