forest.py 文件源码

python
阅读 33 收藏 0 点赞 0 评论 0

项目:scikit-garden 作者: scikit-garden 项目源码 文件源码
def fit(self, X, y):
        """Builds a forest of trees from the training set (X, y).

        Parameters
        ----------
        X : array-like or sparse matrix of shape = [n_samples, n_features]
            The training input samples. Internally, its dtype will be converted
            to ``dtype=np.float32``. If a sparse matrix is provided, it will be
            converted into a sparse ``csc_matrix``.
        y : array-like, shape = [n_samples] or [n_samples, n_outputs]
            The target values (class labels in classification, real numbers in
            regression).
        sample_weight : array-like, shape = [n_samples] or None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node. In the case of
            classification, splits are also ignored if they would result in any
            single class carrying a negative weight in either child node.

        Returns
        -------
        self : object
            Returns self.
        """
        X, y = check_X_y(X, y, dtype=np.float32, multi_output=False)
        return super(MondrianForestClassifier, self).fit(X, y)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号