def _build(self,input_shape):
x = Input(shape=input_shape)
y = Sequential([
Convolution2D(self.parameters['clayer'], (3,3), padding='same', activation=self.parameters['activation']),
BN(),
Dropout(self.parameters['dropout']),
MaxPooling2D((2,2)),
Convolution2D(self.parameters['clayer'], (3,3), padding='same', activation=self.parameters['activation']),
BN(),
Dropout(self.parameters['dropout']),
MaxPooling2D((2,2)),
Convolution2D(self.parameters['clayer'], (3,3), padding='same', activation=self.parameters['activation']),
BN(),
Dropout(self.parameters['dropout']),
MaxPooling2D((2,2)),
flatten,
Dense(self.parameters['layer'], activation=self.parameters['activation']),
# BN(),
# Dropout(self.parameters['dropout'])
# *[Sequential([,])
# for i in range(self.parameters['num_layers']) ],
Dense(1,activation="sigmoid")
])(x)
def loss(x,y):
return bce(x,y)
self.loss = loss
self.net = Model(x, y)
评论列表
文章目录