def _build(self,input_shape):
data_dim = np.prod(input_shape)
self.gs = self.build_gs()
self.gs2 = self.build_gs(N=data_dim)
self.gs3 = self.build_gs(N=data_dim)
_encoder = self.build_encoder(input_shape)
_decoder = self.build_decoder(input_shape)
x = Input(shape=input_shape)
z = Sequential([flatten, *_encoder, self.gs])(x)
y = Sequential([flatten,
*_decoder,
self.gs2,
Lambda(take_true),
Reshape(input_shape)])(z)
z2 = Input(shape=(self.parameters['N'], self.parameters['M']))
y2 = Sequential([flatten,
*_decoder,
self.gs3,
Lambda(take_true),
Reshape(input_shape)])(z2)
def rec(x, y):
return bce(K.reshape(x,(K.shape(x)[0],data_dim,)),
K.reshape(y,(K.shape(x)[0],data_dim,)))
def loss(x, y):
return rec(x,y) + self.gs.loss() + self.gs2.loss()
self.callbacks.append(LambdaCallback(on_epoch_end=self.gs.cool))
self.callbacks.append(LambdaCallback(on_epoch_end=self.gs2.cool))
self.callbacks.append(LambdaCallback(on_epoch_end=self.gs3.cool))
self.custom_log_functions['tau'] = lambda: K.get_value(self.gs.tau)
self.loss = loss
self.metrics.append(rec)
self.encoder = Model(x, z)
self.decoder = Model(z2, y2)
self.net = Model(x, y)
self.autoencoder = self.net
评论列表
文章目录