def get_output(self, train):
X = self.get_input(train)
output = downsample.max_pool_2d(X, ds=self.poolsize, st=self.stride, ignore_border=self.ignore_border,
mode=globals.pooling_mode)
return output
# class AveragePooling2D(MaxPooling2D):
# def __init__(self, poolsize=(2, 2), stride=None, ignore_border=True):
# super(AveragePooling2D, self).__init__()
# self.input = T.tensor4()
# self.poolsize = tuple(poolsize)
# self.stride = stride
# self.ignore_border = ignore_border
# def get_output(self, train):
# X = self.get_input(train)
# sums = images2neibs(X, neib_shape=(globals.s_size, 1)).sum(axis=-1)
# counts = T.neq(images2neibs(X, neib_shape=(globals.s_size, 1)), 0).sum(axis=-1)
# average = (sums/counts).reshape((X.shape[0], X.shape[1], 2, 1))
# return average
评论列表
文章目录