def getSentimentRNN(fileToLoad,modelDir):
checkpoint_dir = "./rnn_runs/"+modelDir+"/checkpoints/"
batch_size = 64
n_hidden = 256
x_test, y_test, vocabulary, vocabulary_inv,trainS = data_helpers.load_data_for_books("./data/"+fileToLoad+".txt")
y_test = np.argmax(y_test, axis=1)
print("Vocabulary size: {:d}".format(len(vocabulary)))
print("Test set size {:d}".format(len(y_test)))
x_test = np.fliplr(x_test)
checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir)
graph = tf.Graph()
with graph.as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=False)
sess = tf.Session(config=session_conf)
with sess.as_default():
# Load the saved meta graph and restore variables
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
print("{}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
# Get the placeholders from the graph by name
input_x = graph.get_operation_by_name("x_input").outputs[0]
predictions = graph.get_operation_by_name("prediction").outputs[0]
istate = graph.get_operation_by_name('initial_state').outputs[0]
keep_prob = graph.get_operation_by_name('keep_prob').outputs[0]
# Generate batches for one epoch
batches = data_helpers.batch_iter(x_test, batch_size, 1, shuffle=False)
# Collect the predictions here
all_predictions = []
all_scores = []
for x_test_batch in batches:
batch_predictions = sess.run(predictions, {input_x: x_test_batch, istate: np.zeros((len(x_test_batch), 2*n_hidden)), keep_prob: 1.0})
binaryPred = np.argmax(batch_predictions,axis=1)
all_predictions = np.concatenate([all_predictions, binaryPred])
all_scores = np.concatenate([all_scores, batch_predictions[:,1] - batch_predictions[:,0]])
mbs = float(len(all_predictions[all_predictions == 1]))/len(all_predictions)
mss = np.mean(all_scores)
print "Mean Binary Sentiment",mbs
print "Mean Smooth Sentiment",mss
return all_predictions,all_scores
评论列表
文章目录