def dev_step(x_dev, pos_dev, neg_dev):
"""
Evaluates model on a dev set
"""
batches = data_helpers.batch_iter(
list(zip(x_dev, pos_dev, neg_dev)), FLAGS.batch_size, 1)
loss_sum = 0
accuracy_sum = 0
count = 0
for batch in batches:
x_batch, pos_batch, neg_batch = zip(*batch)
feed_dict = {
rnn.input_x: x_batch,
rnn.input_xpos: pos_batch,
rnn.input_xneg: neg_batch,
rnn.real_len_x: real_len(x_batch),
rnn.real_len_xpos: real_len(pos_batch),
rnn.real_len_xneg: real_len(neg_batch),
rnn.dropout_keep_prob: 1.0,
rnn.batch_size: len(x_batch),
}
step, summaries, loss, accuracy = sess.run(
[global_step, dev_summary_op, rnn.loss, rnn.accuracy],
feed_dict)
loss_sum = loss_sum + loss
accuracy_sum = accuracy_sum + loss
count = count + 1
loss = loss_sum / count
accuracy = accuracy_sum / count
time_str = datetime.datetime.now().isoformat()
logger.info("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
dev_summary_writer.add_summary(summaries, step)
# Generate batches
评论列表
文章目录