def dev_step(x_dev, y_dev):
"""
Evaluates model on a dev set
"""
batches = data_helpers.batch_iter(
list(zip(x_dev, y_dev)), FLAGS.batch_size, 1)
loss_sum = 0
accuracy_sum = 0
count = 0
for batch in batches:
x_batch, y_batch = zip(*batch)
feed_dict = {
rnn.input_x: x_batch,
rnn.input_y: y_batch,
rnn.dropout_keep_prob: 1.0,
rnn.batch_size: len(x_batch),
rnn.real_len: real_len(x_batch)
}
step, summaries, loss, accuracy = sess.run(
[global_step, dev_summary_op, rnn.loss, rnn.accuracy],
feed_dict)
loss_sum = loss_sum + loss
accuracy_sum = accuracy_sum + loss
count = count + 1
loss = loss_sum / count
accuracy = accuracy_sum / count
time_str = datetime.datetime.now().isoformat()
logger.info("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
dev_summary_writer.add_summary(summaries, step)
# Generate batches
train.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录