def fit(self, X, y=None):
"""
This should fit classifier. All the "work" should be done here.
Note: assert is not a good choice here and you should rather
use try/except blog with exceptions. This is just for short syntax.
"""
# Generate batches
batches = batch_iter(
list(zip(X, y)), self.FLAGS.batch_size, self.FLAGS.num_epochs)
# Training loop. For each batch...
for batch in batches:
x_batch, y_batch = zip(*batch)
feed_dict = {
self.cnn.input_x: x_batch,
self.cnn.input_y: y_batch,
self.cnn.dropout_keep_prob: self.FLAGS.dropout_keep_prob
}
_, loss, accuracy = self.sess.run(
[self.optimizer, self.cnn.loss, self.cnn.accuracy],
feed_dict)
# print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
cnn_classifier.py 文件源码
python
阅读 27
收藏 0
点赞 0
评论 0
评论列表
文章目录