GoogLeNet.py 文件源码

python
阅读 26 收藏 0 点赞 0 评论 0

项目:Papers2Code 作者: rainer85ah 项目源码 文件源码
def build(self, input_shape=None, num_outputs=1000):
        """
                Args:
                    input_shape: The input shape in the form (nb_rows, nb_cols, nb_channels) TensorFlow Format!!
                    num_outputs: The number of outputs at final softmax layer
                Returns:
                    A compile Keras model.
                """
        if len(input_shape) != 3:
            raise Exception("Input shape should be a tuple like (nb_rows, nb_cols, nb_channels)")

        # (224, 224, 3)
        input_shape = _obtain_input_shape(input_shape, default_size=224, min_size=197,
                                          data_format=K.image_data_format(), include_top=True)
        img_input = Input(shape=input_shape)
        # x = ZeroPadding2D((3, 3))(img_input)
        x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(img_input)
        # (122, 122, 64)
        x = MaxPool2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='pool1')(x)
        # (56, 56, 64)

        x = Conv2D(192, (3, 3), strides=(1, 1), name='conv2')(x)
        # (56, 56, 192)
        x = MaxPool2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='pool2')(x)
        # (28, 28, 192)

        # * Inception 3a filters=256
        # * Inception 3b filters=480

        x = MaxPool2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='pool3')(x)
        # (14, 14, 480)

        # * Inception 4a filters=512
        # * Inception 4b filters=512
        # * Inception 4c filters=512
        # * Inception 4d filters=528
        # * Inception 4e filters=832

        x = MaxPool2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='pool4')(x)
        # (7, 7, 832)

        # * Inception 5a filters=832
        # * Inception 5b filters=1024

        x = AveragePooling2D(pool_size=(7, 7), strides=(1, 1), padding='same', name='pool5')(x)
        # (1, 1, 1024)
        x = Dropout(0.4)(x)
        x = Dense(units=num_outputs)(x)
        x = Activation('softmax')(x)

        self.model = Model(inputs=img_input, outputs=x, name='GoogLeNet Model')
        return self.model
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号