def testGAN(trained_model_path=None, n_batches=40):
weights = initialiseWeights()
z_vector = tf.placeholder(shape=[batch_size,z_size],dtype=tf.float32)
net_g_test = generator(z_vector, phase_train=True, reuse=True)
vis = visdom.Visdom()
sess = tf.Session()
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver.restore(sess, trained_model_path)
# output generated chairs
for i in range(n_batches):
next_sigma = float(raw_input())
z_sample = np.random.normal(0, next_sigma, size=[batch_size, z_size]).astype(np.float32)
g_objects = sess.run(net_g_test,feed_dict={z_vector:z_sample})
id_ch = np.random.randint(0, batch_size, 4)
for i in range(4):
print g_objects[id_ch[i]].max(), g_objects[id_ch[i]].min(), g_objects[id_ch[i]].shape
if g_objects[id_ch[i]].max() > 0.5:
d.plotVoxelVisdom(np.squeeze(g_objects[id_ch[i]]>0.5), vis, '_'.join(map(str,[i])))
评论列表
文章目录