def test_cluster(self):
data = np.random.uniform(size=(10, 5))
data = list(data)
d2 = np.random.uniform(size=(10, 5)) + ([5] * 5)
data.extend(list(d2))
d2 = np.random.uniform(size=(10, 5)) + ([-5] * 5)
data.extend(list(d2))
data = np.array(data)
k = Kmeans()
clusters = []
for i in range(10):
clusters.append(k.cluster(data, 3))
c1, l1, ss = min(clusters, key=lambda d: d[2])
c2, d = kmeans(data, 3)
same = False
for a in itertools.permutations(c2):
if np.allclose(c1, a):
same = True
break
self.assertTrue(same)
test_clustering.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录