def build_model():
input_tensor = Input(shape=(150, 150, 3))
vgg16_model = VGG16(include_top=False, weights='imagenet', input_tensor=input_tensor)
dense = Flatten()( \
Dense(2048, activation='relu')( \
BN()( \
vgg16_model.layers[-1].output ) ) )
result = Activation('sigmoid')(\
Activation('linear')( \
Dense(4096)(\
dense) ) )
model = Model(input=vgg16_model.input, output=result)
for i in range(len(model.layers)):
print(i, model.layers[i])
for layer in model.layers[:12]: # default 15
layer.trainable = False
model.compile(loss='binary_crossentropy', optimizer='adam')
return model
#build_model()
评论列表
文章目录