careful.py 文件源码

python
阅读 24 收藏 0 点赞 0 评论 0

项目:crayimage 作者: yandexdataschool 项目源码 文件源码
def hard_rmsprop(loss_or_grads, params, learning_rate = 1.0e-2, epsilon=1e-6):
  """
  Not an actual RMSProp: just normalizes the gradient, so it norm equal to the `learning rate` parameter.
  Don't use unless you have to.

  :param loss_or_grads: loss to minimize 
  :param params: params to optimize
  :param learning_rate: norm of the gradient
  :param epsilon: small number for computational stability.
  :return: 
  """
  grads = get_or_compute_grads(loss_or_grads, params)
  gnorm = T.sqrt(sum(T.sum(g**2) for g in grads) + epsilon)
  grads = [ g / gnorm for g in grads ]

  updates = OrderedDict()

  for param, grad in zip(params, grads):
    updates[param] = param - learning_rate * grad

  return updates
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号