def model_initial(X_train,y_train,max_iter = 5):
global params, val_loss
params = []
val_loss = np.zeros(max_iter)
lr = theano.shared(np.float32(1e-4))
for iteration in range(max_iter):
print 'initializing weights (%d/5) ...'%(iteration+1)
print iteration
network_init = create_network()
net_init = NeuralNet(
network_init,
max_epochs=3,
update=adam,
update_learning_rate=lr,
train_split=TrainSplit(eval_size=0.1),
batch_iterator_train=BatchIterator(batch_size=32),
batch_iterator_test=BatchIterator(batch_size=64),
regression = True,
objective_loss_function = squared_error,
on_training_finished=[SaveTrainHistory(iteration = iteration)],
verbose=0)
net_init.initialize()
net_init.fit(X_train, y_train)
#model training
评论列表
文章目录