def train_it(sess, step=1):
_pat_chars_i, _pat_lens = get_batch(__batch_size)
inputs = {
pat_chars_i: _pat_chars_i,
pat_lens: _pat_lens}
# Run optimization op (backprop)
#run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
#run_metadata = tf.RunMetadata()
#sess.run(optimizer, feed_dict=inputs, options=run_options, run_metadata=run_metadata)
sess.run(optimizer, feed_dict=inputs)
#with open('timeline.json', 'w') as f:
# f.write(
# timeline.Timeline(run_metadata.step_stats)
# .generate_chrome_trace_format())
if step % display_step == 0:
# Calculate batch loss
cost_f = sess.run(cost, feed_dict=inputs)
print ("Iter {}, cost= {:.6f}".format(
str(step*__batch_size), cost_f))
11-lstm-tensorflow-char-pat.py 文件源码
python
阅读 36
收藏 0
点赞 0
评论 0
评论列表
文章目录