test_rop.py 文件源码

python
阅读 25 收藏 0 点赞 0 评论 0

项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码
def test_conv(self):
        for conv_op in [conv.conv2d, conv2d]:
            for border_mode in ['valid', 'full']:
                image_shape = (2, 2, 4, 5)
                filter_shape = (2, 2, 2, 3)
                image_dim = len(image_shape)
                filter_dim = len(filter_shape)
                input = tensor.TensorType(
                    theano.config.floatX,
                    [False] * image_dim)(name='input')
                filters = tensor.TensorType(
                    theano.config.floatX,
                    [False] * filter_dim)(name='filter')
                ev_input = tensor.TensorType(
                    theano.config.floatX,
                    [False] * image_dim)(name='ev_input')
                ev_filters = tensor.TensorType(
                    theano.config.floatX,
                    [False] * filter_dim)(name='ev_filters')

                def sym_conv2d(input, filters):
                    return conv_op(input, filters, border_mode=border_mode)
                output = sym_conv2d(input, filters).flatten()
                yv = tensor.Rop(output, [input, filters], [ev_input, ev_filters])
                mode = None
                if theano.config.mode == "FAST_COMPILE":
                    mode = "FAST_RUN"
                rop_f = function([input, filters, ev_input, ev_filters],
                                 yv, on_unused_input='ignore', mode=mode)
                sy, _ = theano.scan(lambda i, y, x1, x2, v1, v2:
                                    (tensor.grad(y[i], x1) * v1).sum() +
                                    (tensor.grad(y[i], x2) * v2).sum(),
                                    sequences=tensor.arange(output.shape[0]),
                                    non_sequences=[output, input, filters,
                                                   ev_input, ev_filters],
                                    mode=mode)
                scan_f = function([input, filters, ev_input, ev_filters], sy,
                                  on_unused_input='ignore', mode=mode)
                dtype = theano.config.floatX
                image_data = numpy.random.random(image_shape).astype(dtype)
                filter_data = numpy.random.random(filter_shape).astype(dtype)
                ev_image_data = numpy.random.random(image_shape).astype(dtype)
                ev_filter_data = numpy.random.random(filter_shape).astype(dtype)
                v1 = rop_f(image_data, filter_data, ev_image_data, ev_filter_data)
                v2 = scan_f(image_data, filter_data, ev_image_data, ev_filter_data)
                assert numpy.allclose(v1, v2), ("Rop mismatch: %s %s" % (v1, v2))
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号