def conv2d(input, filters, biases=None, border_mode=0, stride=(1, 1)):
"""
Light wrapper around conv2d - optionally handle biases
"""
r = nnet.conv2d(
input=input,
filters=filters,
border_mode=border_mode,
subsample=stride,
filter_flip=True)
if biases is None:
return r
else:
return r + biases.dimshuffle('x', 0, 'x', 'x')
评论列表
文章目录