def wavenetBlock(n_atrous_filters, atrous_filter_size, atrous_rate,
n_conv_filters, conv_filter_size):
def f(input_):
residual = input_
tanh_out = AtrousConvolution1D(n_atrous_filters, atrous_filter_size,
atrous_rate=atrous_rate,
border_mode='same',
activation='tanh')(input_)
sigmoid_out = AtrousConvolution1D(n_atrous_filters, atrous_filter_size,
atrous_rate=atrous_rate,
border_mode='same',
activation='sigmoid')(input_)
merged = merge([tanh_out, sigmoid_out], mode='mul')
skip_out = Convolution1D(1, 1, activation='relu', border_mode='same')(merged)
out = merge([skip_out, residual], mode='sum')
return out, skip_out
return f
simple-generative-model-regressor.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录