cdssm.py 文件源码

python
阅读 24 收藏 0 点赞 0 评论 0

项目:MatchZoo 作者: faneshion 项目源码 文件源码
def build(self):
        def mlp_work(input_dim):
            seq = Sequential()
            num_hidden_layers = len(self.config['hidden_sizes'])
            assert num_hidden_layers > 0
            if num_hidden_layers == 1:
                seq.add(Dense(self.config['hidden_sizes'][0], input_shape=(input_dim,)))
            else:
                seq.add(Dense(self.config['hidden_sizes'][0], activation='relu', input_shape=(input_dim,)))
                for i in range(num_hidden_layers - 2):
                    seq.add(Dense(self.config['hidden_sizes'][i+1], activation='relu'))
                    seq.add(Dropout(self.config['dropout_rate']))
                seq.add(Dense(self.config['hidden_sizes'][num_hidden_layers-1]))
                seq.add(Dropout(self.config['dropout_rate']))
            return seq
        query = Input(name='query', shape=(self.config['text1_maxlen'],))
        show_layer_info('Input', query)
        doc = Input(name='doc', shape=(self.config['text2_maxlen'],))
        show_layer_info('Input', doc)

        wordhashing = Embedding(self.config['vocab_size'], self.config['embed_size'], weights=[self.config['embed']], trainable=self.embed_trainable)
        q_embed = wordhashing(query)
        show_layer_info('Embedding', q_embed)
        d_embed = wordhashing(doc)
        show_layer_info('Embedding', d_embed)
        conv1d = Convolution1D(self.config['kernel_count'], self.config['kernel_size'], padding='same', activation='relu')
        q_conv = conv1d(q_embed)
        show_layer_info('Convolution1D', q_conv)
        q_conv = Dropout(self.config['dropout_rate'])(q_conv)
        show_layer_info('Dropout', q_conv)
        d_conv = conv1d(d_embed)
        show_layer_info('Convolution1D', d_conv)
        d_conv = Dropout(self.config['dropout_rate'])(d_conv)
        show_layer_info('Dropout', d_conv)
        q_pool = MaxPooling1D(self.config['text1_maxlen'])(q_conv)
        show_layer_info('MaxPooling1D', q_pool)
        q_pool_re = Reshape((-1,))(q_pool)
        show_layer_info('Reshape', q_pool_re)
        d_pool = MaxPooling1D(self.config['text2_maxlen'])(d_conv)
        show_layer_info('MaxPooling1D', d_pool)
        d_pool_re = Reshape((-1,))(d_pool)
        show_layer_info('Reshape', d_pool_re)

        mlp = mlp_work(self.config['kernel_count'])

        rq = mlp(q_pool_re)
        show_layer_info('MLP', rq)
        rd = mlp(d_pool_re)
        show_layer_info('MLP', rd)
        out_ = Dot( axes= [1, 1], normalize=True)([rq, rd])
        show_layer_info('Dot', out_)
        if self.config['target_mode'] == 'classification':
            out_ = Dense(2, activation='softmax')(out_)
            show_layer_info('Dense', out_)

        model = Model(inputs=[query, doc], outputs=[out_])
        return model
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号