def __init__(self, nb_filter, nb_row, nb_col,
init='glorot_uniform', inner_init='orthogonal',
forget_bias_init='one', activation='tanh',
inner_activation='hard_sigmoid', dim_ordering="tf",
border_mode="valid", sub_sample=(1, 1),
W_regularizer=None, U_regularizer=None, b_regularizer=None,
dropout_W=0., dropout_U=0., **kwargs):
self.nb_filter = nb_filter
self.nb_row = nb_row
self.nb_col = nb_col
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.forget_bias_init = initializations.get(forget_bias_init)
self.activation = activations.get(activation)
self.inner_activation = activations.get(inner_activation)
self.border_mode = border_mode
self.subsample = sub_sample
assert dim_ordering in {'tf', "th"}, 'dim_ordering must be in {tf,"th}'
self.dim_ordering = dim_ordering
kwargs["nb_filter"] = nb_filter
kwargs["nb_row"] = nb_row
kwargs["nb_col"] = nb_col
kwargs["dim_ordering"] = dim_ordering
self.W_regularizer = W_regularizer
self.U_regularizer = U_regularizer
self.b_regularizer = b_regularizer
self.dropout_W, self.dropout_U = dropout_W, dropout_U
super(LSTMConv2D, self).__init__(**kwargs)
recurrent_convolutional.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录