def __init__(self, filters,
kernel_initializer='glorot_uniform',
kernel_regularizer=None,
kernel_constraint=kconstraints.NonNeg(),
k_initializer='zeros',
k_regularizer=None,
k_constraint=None,
tied_k=False,
activity_regularizer=None,
strides=1,
padding='valid',
dilation_rate=1,
data_format=K.image_data_format(),
**kwargs):
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super(Conv2DSoftMinMax, self).__init__(**kwargs)
self.filters = filters
self.kernel_initializer = initializers.get(kernel_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.k_initializer = initializers.get(k_initializer)
self.k_regularizer = regularizers.get(k_regularizer)
self.k_constraint = constraints.get(k_constraint)
self.tied_k = tied_k
self.activity_regularizer = regularizers.get(activity_regularizer)
self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, 2, 'dilation_rate')
self.padding = conv_utils.normalize_padding(padding)
self.input_spec = InputSpec(min_ndim=2)
self.data_format = data_format
self.supports_masking = True
评论列表
文章目录