def em(data):
gmm = GaussianMixture(
n_components=6,
covariance_type="tied"
).fit(data)
predicted_data = gmm.predict(data)
print collections.Counter(predicted_data)
print metrics.silhouette_score(data, predicted_data)
reduced_data = reduce_with_pca(data, 2)
plot_2d_data(reduced_data, predicted_data)
评论列表
文章目录