def temp_log_loss(w, X, Y, alpha):
n_classes = Y.shape[1]
w = w.reshape(n_classes, -1)
intercept = w[:, -1]
w = w[:, :-1]
z = safe_sparse_dot(X, w.T) + intercept
denom = expit(z)
#print denom
#print denom.sum()
denom = denom.sum(axis=1).reshape((denom.shape[0], -1))
#print denom
p = log_logistic(z)
loss = - (Y * p).sum()
loss += np.log(denom).sum()
loss += 0.5 * alpha * squared_norm(w)
return loss
评论列表
文章目录