def benchmark(clf):
print('_' * 80)
print("Training: ")
print(clf)
t0 = time()
clf.fit(X_train, y_train)
train_time = time() - t0
print("train time: %0.3fs" % train_time)
t0 = time()
pred = clf.predict(X_test)
test_time = time() - t0
print(clf)
print("test time: %0.3fs" % test_time)
score = metrics.f1_score(y_test, pred)
# print("f1-score: %0.3f" % score)
print("Predicted classes:-")
for element in range(9):
print(listdir("/home/shrinidhi/tweeot/twitter_trials/twitter/testing/"+str(y_test[element])),": ",categories[pred[element]])
'''if hasattr(clf, 'coef_'):
print("dimensionality: %d" % clf.coef_.shape[1])
print("density: %f" % density(clf.coef_))
if opts.print_top10 and feature_names is not None:
print("top 10 keywords per class:")
for i, category in enumerate(categories):
top10 = np.argsort(clf.coef_[i])[-10:]
print(trim("%s: %s"
% (category, " ".join(feature_names[top10]))))
print()
if opts.print_report:
print("classification report:")
print(metrics.classification_report(y_test, pred,
target_names=categories))
if opts.print_cm:
print("confusion matrix:")
print(metrics.confusion_matrix(y_test, pred))
print()'''
clf_descr = str(clf).split('(')[0]
return clf_descr, score, train_time, test_time
评论列表
文章目录